The real functions are constructed by linear superposition of eigenfunction
with + K and — K cigenvalues:

cos K¢ = 4(e'*¢ + e 'K9) (1519

Hence the angular momentum associated with real functions has an avenip
value of zero. The functions in Eqs. (15.14) and (15.15) contain informatis
on the energy but not on the angular momentum. If the particle has a precis
angular momentum (which is the case, for example, for a charged particle ii
a magnetic field), we must use the cigenfunctions of the angular momeniisi
operator, that is, the complex functions.

15.2 THE RIGID ROTOR

We will now consider a more general case for rotational motion. In this mod!
the particle is not restricted to any particular planc. The distance from the o
ter is still fixed. As in the case of the plane rotor, we will set the poteniil
energy ¥ equal to zero,

According to classical mechanics, the total energy of such a system &
given by

L 130

E= N|~_ A \

where [ is the moment of inertia and I? is the square of the total angular &
mentum. The relation between the total angular momentum and its comj

nents is given by
=il +jl + kb

R i :‘.
=i+ + 12

The Schrédinger Equation

In order to find the wave functions and the energies of a rigid rotot, ¥

must construct the Hamiltonian from Eq. (15.18) and solve the correspordii
Schridinger equation. The results of the theory, however, can be underdti
without going through the lengthy mathematics involved in solving Wi
Schrodinger equation for a rigid rotor. Hence we will outline the theory #ji

state the resuits. L
The Schrodinger equation for a rigid rotor is solved in a spherical gl

coordinate system (Fig. 15.5). In this system r is the distance from the weeid
8 (range O to =) is the angle between r and the z axis; and ¢ (range 0 to 2n) bl
angle in the xy plane.
Since the distance r is fixed, each wave function Y is a function of oafi
and ¢
Y = Y(0, 4} (1
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_w_

Sgare 155, Relation between the

whesian and spherical polar coordinate
b, A point is represenled by x, y, and z
| 184 Cortesian coordinate system, and by

% ond ¢ in the spherical polar coordinate
e x = rosinfcosdy, y morsind singy;

W} i =rcosf, A volume element in

{Mikea! polar coordinates is given by

W e sin 0d0 di.

(These functions are called spherical harmonics, and Y is the standard symbol
for them.) The Schrodinger equation for a rigid rotor is

Iw» t mnu.+ 1 @ mmsmm:.
21 [sin 0 8¢ " sin 69 o
This is a partial differential equation with two variables. In order to solve
Eqg. (15.21) we have to separate it into two ordinary differential equalions. The
separation is accomplished by writing the wave function as a product of two
functions:

=EY (15.21)

Y = O(0)d(¢) (15.22)

Substitution of this equation into Eg. (15.21) followed by a little algebra yiclds
two ordinary differential equations. They are

420 :
agr = K@ (15.23a)
d*0 cosPd® ., 2UE
@ Tmoa KO (15.23b)

The first equation is the Schrddinger equation for the plane rotor dis-
cussed in the previous section. Energies of a rigid rotor (not confined to a plane)
are obtained by solving Eq. (15.23b).

Energies and Wave Functions

Acceptable solutions (periodic, single-valued and continuous functions) for the
second equation exist only if

IE

JJ+1)= uw_ (15.24)

Chapter 15 Rolational Spectroscopy 403



where J is the angular momentum quantum number. It is restricted to i
vilues

J=0,1,2, ... (1524

As in the case of the plane rotor, K takes the values 0, £1, £2,....Th
two differential equations, however, are coupled. Note that K enters into boi}
differential equations. Hence K values are further restricted by J values ang
are given by the formula

K=0 %1, £2,..., +J (15X

The physical reason why |K| cannot exceed J will be clear when we considh
the properties of angular momentum in the next section.
From Eq, (15.24) we see that the quantized energies of a rigid rotor an
given by _
% .

E;= wm..-t + )= BJ(J + 1} (130
where B (J) is called the rotational constant. The cnergy levels are schemal
cally illustrated in Fig. 15.6. Notice that the energy of the rigid rotor does n
depend on K, the quantum number. [Equation (15.12) pertains only o a plin
rotor.] In the previous section we noted that K is a measure of angular momta

=l SoR
6 428
5 B
4 208
k] 128
2 * 6l
| I 2R
¢} 0
(1)
Figure 156. (a) Rotational encrgy levels of
diatomic molecules, (b} Expected frequencies If—u m_s _ . _ _ _ _ _
in the spectrum. {The relative intensity of the
rolational lines, which is not indicated here, Y ——
depends on the temperature.} )
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tum along the z axis. Since the choice of the z axis is arbitrary, the energy for a
rotor in three dimensions should not depend on K,

There are (2J + 1) values of K for each J, as shown by Eq. (15.26). For
example, for J = 3 thereare 2 x 3 + | = 7 values of K, These are 3,2, 1,0, —1,
—2,and —3. Hence each rotational enetgy level has & (27 + 1)-fold degeneracy.
This is also indicated in Fig. 15.6.

Table 15.1 lists a few wave functions for a rigid rotor.

TABLE 151 SPHERICAL
HARMONICS CORRESPONDING
TO s, p, AND d FUNCTIONS

V3= g
u 12
Y= A anv cos §
L2
Yi= A%Mv sin fe'*
12
¥it= Awuﬂv sin Qg i

16n
1 1/2
Yi= Amv stn 0 cos fe*
15\
Yi'= Am sin 8 cos fe ¥
1
Yi= Aw_uua.v sin? pe*'¢

-2 ISP,
Y;?= o L e~

umple 15.2

Show that Y, q is an cigenfunction of the rigid rotor Hamiltonian. What is the cigen-
value?

The Hamiltonian is given on the left-hand side of Eq. (15.21), and ¥, , in Table
15.1. The first term in the Hamiltonian gives zero since Y, 4, is independent of ¢. The
second term gives

_h 1 e .a:\_.o _ W[@Y,  cos@ Y,
ulsinoao\"™" Fg /|7 T35 tsnd o0

ru u :_u ‘.u
=57 Aﬂ_.v [—cos @ — cos §] = Imﬁ:\_.a

The eigenvalue is 2h*/2J which is identical to E, in Eq. (15.27) when J = 1.

It
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15.3 ANGULAR MOMENTUM

LAATEARY

LB

 \

i
Treal.

K==-2

(b}

Figure 15,7, Relalion belween total angular
momentum #nd ils z componenl. Avcording
to quanium Lheory, the total angular
momentum veclor can take up only certain
orientalions with respect to an applied field.
In (2} the angular momentum veclor can be
anywiere on the cone around the K axis,
For a given value of J a rolor gan have

Ked K=J-1..K J values lor
the angular momentum along the z axis.
Thus the angular momenium vector can
take (2J + i) orientations with respeet 1o the
z axis. This is shown for J = 2 in (b).

The energy and angular momentum operators play a crucial role in quantyi
theory. Their importance extends heyond the calculations involving energy o
angular momentum. This is because the eigenfunctions of these operators 1l
used in calculating a variety of other properties. We will now describe (ki
angular momentum propertics of a rigid rotor. Following that, we will introdus
other types of angular momenta encountered in quantum theory.

Rigid Rotor

From Egs. (15.18) and (15.27) we sec that the square of the total angular m
mentum is quantized and restricted to the following values:

L= 30+ Dh {151

Only one of the components—which we have arbitrarily identified as the
component-—is quantized. The allowed values for the z component of the anguly

momentum are
I, = Kh (150

The other two components of the angular momentum do not have precis
values, and we can only compute Lhe average values for them. This is 4 ¢0s

Hence the E.__m_nm between the z axis and the direction of the angular momentum
vector are given by the relation

K

cos ) = HMA.M..T _VH—:u A—M.ucv

. The phenomenon of restricted orientation is called space quantization.
ince

Kimax) = J J = a\m@ + : (for J > 0) (15.31)

the total ms,.w:_m_. momentum vector can never be completely aligned with the z
axis. Since I, and /, cannot have precise values, the total angular momentum
vector cannot be fixed along a particular direction in space. As a consequence,
the angular momentum vector precesses around the z axis at an angle given by
Eq. (15.30). This behavior is consistent with the uncertainty principle, which
s.as_n_ _u._n violated if the angular momentum vector were to have a precise
orientation.

. At _m._.mn J values we will have a large number of oricntations about the
z axis, Besides,

K(max) = J = JJT + 1) (15.32)

for large J. Hence we can have nearly complete orientation along the 2 axis.
Thus at very high J values quantum results converge to classical results.

sequence of the commuting properties of angular momentum operalors. T Yvample 15.3
total angular momentum opcrator {2 commutes with the operators for coch ¢f
the components [, [, and [, but the latter do not commuie among themselyes |
Hence we can have precise knowledge of the total angular momentum and oft
of its components. This component is usually taken as the z compenent,

It may scem odd that the theory identifies a particular componen!
unique even though the three spatial axes are equivalent. In order to clarlfy
this point about the designation of axes, let us consider a beam of unpolariml
light. I a polarizer is inserted into the beam, only hall of the intensity of |
beam will be transmitted. The polarization of the emergent beam is gover
by the orientation of the polarizer. We visualize the unpolarized light a4
superposition of two beams polarized along the two directions perpendiculis
to the axis of propagation. These direclions may be designated x and y oven
though there is no particular reason to distinguish them until we insert (117
polarizer. In a simifar fashion we designate the unique axis when the rotof iy
in an electric or a magnetic field as the z axis and continuc to refer to 14
designation even in the field-free case.

Space Quantization

If the z component of an angular momentum vector can have only (2J + |
values, it foilows that the angular momentum veclor can have only (2J 4

orientations with respect to the z axis. This is illustrated for the J =121 an |
in Fig. 15.7. The length of the angular momentum veclor is proportional

f3J + 1), and that of the z component, to K. [See Egs. (15.28) and (13 N
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Consider a rigid rotor with J = 2. Culculate the angles of orientation of its angular
momentum vector with respect 1o the z axis.

Since J = 2, the total angular momentum is
I 22 + 1)h = 245h
The z components of the angular momentum are
&, = 2h, |h, Ok, —1h, =2
Hence
cos ] = 2/2.45, 1/2.45, 0, —1/2.45, —~2/2.45

and

il = 35.28", 65.91°, 90°, 114.09", 144.72"
Orhital and Intrinsic Angular Momenta

Even though we are concerned with rotational motion in this chapter, this is
a good place to examine related topics. In atomic and molecular theories we
come across a variety of angular momenta. They are associated with orbital
motion of electrons, rotational motion of molecules, spin of electrons, spin of
nuclei, and combinations of two or more of these modes. Table 15.2 lists some
of these angular momenta and the standard symbols for them. In each case the
mo:._ angular momentum and one of its compenents is quantized as indicated
in the table.

There is an important distinction between the orbital or the rotational
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TABLE 152 SYMBOLS OFTEN USED FOR ANGULAR MOMENTA ;

Type of motion

Orbital motion
of clectron

Orbital motion
of many clectrons

Spn of electron
Spin of many clectrons

Spin of nucleus

Rotational motion
of molecules

* K is used to denote the angular momentum along the molecule fixed axis, and _E.H:_n anguliar momentum along

the space fixed axis.

Symbol for Allowed values i
angular Symbo! for of angular Allowed valuesfor -~
momentum 2 component momentum z component ;
! m, JH+ =01, 0, £1h, ..., +1k ;
L M, VUL + DA 0, +1h,..., i
5 m, Ji{s 4+ Dy s =14 +ih :
S M, JS(IS+ Dh 0, +10,..., +5h , h
S is an integer if the if § is an integer;, n
number of elecirons 15 +bh, +3h, +5h |
even: it is a half-integer if $is a half-integn 5
otherwise | TR T
! M, JIT+ )i 0, ..., b 5 - -
I is fixed for any given il 1 is an integer : R
nucleus; it is either an .H t... +1h, sy L Frwe 158, The cenler of mass of a
integer or a half-integer i 'is u hatf-integt! Hitomic moteculc 15 governed by the
J R* M° A+ D =0,1,... 0, 1h,..., 0 lOn inry = amyry

J

angular momentum and what will be referred to as the spin or the intring
angular momentum. The former has a counterpart in classical physics, and i
can be visualized as a property of particles moving in orbits. For this typa el
motion the total angular momentum has integer quantum numbers, as we iy
seen above. [It should be remembered that if the quantum number is 3, Fn
example, then the actual value of the angular momentum is ,\ 3+ D] Tt
component can have only intcger values, as indicated in Eg. {15.29).

In Chap. 17 we will present experimental evidence for the existence #f
another type of angular momentum called spin or intrinsic angular momentisy
There is no classical counterpart to this type of angular momentum even though
one customarily associates it with particles rotating around their own nsi
{Calling it intrinsic angular momentum, even occasionally, avoids imprinting &
firm belief in E.:E. objects whirling around their axes.) According to quaniu Sige particle of ceduced mass
theory, the intrinsic angular momentum guantum number of a particle cap f#: & [m, 00, -+ i
either an integer or a half-integer. Thus the angular momentum associated wis A =¢, 4 rp Nole that the reduced mass s
the spin of an electron is y/4(} + 1)h. The z component may have the values 4 Jf -+ Salker than cither of the two masses.

i,

Pyore 159, Two cquivalent models,
4atation of a dratomic moleculy around s
ikler of mass is equivalent o retalion of o

34 HETERONUCLEAR DIATOMIC MOLECULES

The theory developed in the previous section can be used, with only a slight
modification, to explain the important features of the rotational spectra of
diatomic molecules. This is because a diatomic molecule executing rotational
motion 1s mathematically identical to a single-particle rotor. We will prove this
slatement now.

Rolational Energies of Diatomic Molecules

If a molecule exhibits only rotational motion, its center of mass will remain
fixed. The distances of the two atoms, r, and r,, from the center of mass are
related by the equation

myr, = myr, (15.33)
(Sce Fig. 15.8.) If we add m,r, Lo both sides of the above equation and rearrange
il, we have

m,R

r = ;
m, + iy

(15.34)

where R is the bond length. (R = r, + r,.) The same logic also gives

mR

r,=
my + my

(15.35)

The moment of inertia of a diatomic molecule is given by

I=my} + myrl (15.36)

When the expressions for r, and r, are substituted into this equation, we have

I =mR? (15.37)

where m, is called the reduced mass. It is related (o the masses of the two atoms
by the expression

mom;

g (15.38)

m, =

Equation (15.37) is the formula for the moment of inertia of a rigid rotor
with 1 mass of m,. Hence the rotational energies of a diatomic molecule are
given by Eq. (15.27), provided we use the reduced mass instead of the mass of
a single particle, and follow the pattern shown in Fig. 15.6.

Figure 15.9 shows the relation between a rotating diatomic molecule and
the rigid rotor model.

or —4h. In general, the quantum numbers for the z component of the intrim®
angular momentum take the vatues £, 7 — 1,..., =/, where I is an integer o
a half-integer. (See Table 15.2)

tyample 15.4
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The bond length of the '2C'80 molecule is determined from the rotational spectrum
to be 112.8 pm. Calculate (a) the reduced mass, (b) the moment of inertia, and (c) the
first three rotational energies.

Chapter 15 Rotational Spectroscopy 409



