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atom. The Aufbau principle dictates that the subshells (n€) be filled in order of
increasing energy, the energy being determined in part by screening argu-
ments. This principle is most easily understoed in the context of a discus-
sion of the ground states of multiclectron atoms.

9.3 GROUND STATES OF N-ELECTRON ATOMS*

Consider an N-clectron atom. The ground state of this atom is simply the
state with the lowest possible total energy. Since the single-particle Hamil-
tonians in the central ficld approximation do not single out a unique direction
in space, the energy of the state is independent of the quantum numbers
m, i —1,2,..., N.Similarly, it is independent of m,, i = 1,2,..., N.

Hence an energy level of the system may be specified by the 2V quantum
numbers n,, £, for i = 1,2, ..., N. The electronic configuration of a state of
the alom is a statement of the quantum numbers #, and £, for all electrons. It
also indicates how the electrons fill the shells and subshells of the atom. For
example, the clectronic configuration of the ground state of hydrogen is L, of
helium 152, of lithium 1522s. The superscript 2 on the configuration of helium
indicates that there are two electrons in the s shell.

Notice that we did not write is® for the electronic configuration of
lithium. The reason is that the Pauli exclusion principle forbids more than two
electrons from occupying the same s subshell, To see this we need only recall
that electrons in an s subshell have quantum numbers £ = 0, m, == 0. Thus
their spin quantum numbers must differ. There are only two possibilities,
m, = -+, so only two electrons can occupy the s subshell.

The shells of the atomn are sometimes labeled by the letters K, L, M, ...
corresponding to principal quantum numbers !, 2, 3, ... Each shell consists
of a number of subshells,*”

The Aufbau principle states that the electrons are to be placed in subshells
in accordance with the Pauli exclusion principle. The most natural ordering
of the subshells would seem to be

ls, 25, 2p, 35, 3p, 3d, 4s, .. ., (9.14)

where the encrgy increases from left to right. This ordering seems reasonable.
Penetration arguments like those in Sec. 9.2 indicate that subshells of a

4See Prob. 9.1 for excited states.

5The subshells are denoted by spectroscopists as K, Ly, L, My, M, ... corre-
sponding to 1s, 25, 2p, 35, 3p, .. ., respectively. Thus you may see the shell structure of
an atom indicated by notation like K, L{L,, L3), MM, My, M3} ...
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particular shell are ordered in energy as s, p, 4, ..., and we know that the
energy of a shell increases with its principal quantem number.,

As slated earlier, the number of electrons that can occupy a particular
subshell is determined by the Pauli exclusion principle. Thus no more than
two clectrons can occupy an s (£ = 0) subshell {e.g., 15, 25, 35,...), and in
cach subshell the electrons must be oppositely paired. Six electrons can
occupy a p subshell (€ = 1), two with m,, = — 1, two with m, — 0, and (wo
with m,, = - 1. Similar arguments show that 10 electrons fill a o subshell, 14
fill an f subshell, and so on.

A shell that contains the full complement of electrons allowed by the
exclusion principle 1s called a closed shell (or filled shell). Obviously, a shell
that is not closed is open (or partially filled). If an atom consists of a number
of closed shells and subshells plus one or more electrons in a partizlly filled
shell, these clectrons are called valence electrons. In hithium, 1s?2s, for
example, the 2 electron is the valence electron.

The Aufbau principle determines much of the shape and form of the
periodic table of the elements. The chemical properties of various elements
are largely determined by the number of valence electrons. It is chiefly these
electrons that participate in bonding and chemical reactions. Because of the
Aufbau principle, certain patterns in electronic configuralions reappear
periodically as the number of electrons increases. Thus carbon (1s® 25* 2p?)
and silicon (152 252 2p¢ 35* 3p?) each have two p valence electrons; this fact
implies that some of their chemical properties will be similar, and experi-
meiis indicate that such is indeed the case.®

Unfortunately, the simple ordering given in (9.14) breaks down in the
n = 3 shell. For example, if the configuration of an atom consists of partially
occupied 3d and 4s subshells, then, contrary to the ordering of (9.14), the 4s
level fills before the 3d level. And the electronic configuration of potassium
is 15?257 2p5 352 3pS 4s, not 15* 252 2p® 352 3p 3d. Qualitatively, this ordering
can be understood by referring to probability densities. The small amount of
probability density of the 4s orbital near the nucleus is enough to pull its
energy level below that of the 34 orbital, which penetrates very little into the
region of small r (see Fig. 3.4). In fact, the simple ordering of (9.14) is
observed to break down in several regions of the periodic table—for exam-
ple, for neutral and singly ionized transition metal ions, alkaline earths, and
alkalies. The more highly ionized species tend to follow the ordering of
(9.14). The details are too involved to go into here (see the Suggested Readings
for this chapter).

5In fact, silicon-based life has been proposed as a possible alternative to the
carbon-based life of whict we are so fond. See Car! Sagan, The Cosmic Comnection (New
York: Anchor Press, 1973), p. 47.
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The actual ordering of orbitals for neutral atoms is better described by the
following convenient table.

Increasing
—_—
Shell » energy

n=1273 ls 2 2p 35 3p « 3d

= 4 4p - 44 - - 4f - -
n=4 5 P : o o oG
n=35 55 5p - 5d -
n==6 65 6p

A list of the ground-state configurations of all aloms appears in Appendix 5.

Wave Functions

Summarizing, we see that, in order to construct the ground-state configura-
tion of a multielectron atom, we assign electrons to subshells according to
(9.15) and the Pauli principle, beginning with the subshell of lowest energy.
The corresponding ground-state wave function can be writlen down from Eq.
(9.8). For example, the cigenfunction for the ground state of an atom with N

even is

w, = lpn(r)e(l) wi(r)f2) walr:)e(3)
R .\\:?..%Hz_l_vﬂﬁz o —V ﬂ\iinﬁﬂ?@ﬁﬁzv_- Ab—mv

o

where the functions ¥ .., (r,) are single-particle orbitals obtained by mo_i:.m
the Schroedinger equation for the ith particle in the isolated electron approxi-
mation or the central field approximation. Using a bar to denote spin
*down,” we can abbreviate Eq. (9.16) as

y, = |1s(1) Ts2) 25(3) 2s(4) -+ ntm(N—1) nlm(N)\. .17

The energy is simply the sum of the energics of each electron.

Example 9.1

Ground State cf Neon
For neon (N == 10), the ground-state configuration is (by the Aufbau
principle) 15225?2p®. Therefore the ground-state wave function is
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wy = | 1s(1) 15(2) 25(3) 25(4) 2po(5) 2po(6) 2p_ 1(T) 2p 1 (8) 2p,(9) 2p,(10) .
(9.18)

The ground state of neon is a singlet (why 7).

Neon was a particularly fortunate choice for our illustration; because its
configuration is that of a closed shell, in which all the electrons are paired, we
could write down a unique Slater determinant as in Eq. (9.18). If the con-
figuration of an atom corresponds to an open shell, there will be some
ambiguity aboul the assignment of quantum numbers to electrons, For
example, the ground-state configuration of lithium is 1s5%*2s, and the 2s
clectron can have m, = 4-} or m, = —J. The two resulting wave functions
are degenerate. Similarly, for carbon, with configuration 15*25*2p?, we can
write several Slater determinants corresponding to the same energy. The 2p
subshell contains two equivalent electrons, so called because their principal
and orbital angular momentum quantum numbers are the same. The elec-
tronic configuration and energy depend only on the quantum numbers n, and
¢, for each clectron, but a wave function depends on », £, m,, and m,,
i=12...,N

Exercise 9.1 Write the 15 different degcnerate wave functions corre-
sponding to the ground-state configuration of carbon. What is the ground-
state energy of these functions in the isolated electron approximation?

Thus the presence of equivalent clectrons in a partially filled shell gives rise to
depenerate wave functions. As in the one-electron atom, some of this degen-
eracy is lifted when previously ignored interactions are considered (e.g., the
spin-orbit interaction).

9.4 ANGULAR MOMENTUM COUPLING IN
MULTIELECTRON ATOMS

A number of interactions have been omitted from the Hamiltonian in Eq.
(9.3). The N electrons each have a spin magnetic moment and an orbital
magnetic moment associated with them. All these magnetic moments can
interact in various ways. The mutual coulomb repulsion of the electrons,
which is related to forces that are directed not toward the nucleus but along
lines between electrons, influences the individual orbital angular momenta L,
in such a way that they couple. Although each individual angular momentum
operator does not commute with JC (if these potential energy terms are
included) and so is not a constant of the motion, the resultant total orbital
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angular momentum is a constant of the motion. The individual spins can also
be coupled together to form a total spin angular momentum.

We see, therefore, that electrostatic interactions tend to couple all the
orbital angular momenta and all the spin angular momenta. In addition,
there are the spin-orbit interaction and other magnetic interactions (spin-spin,
spin-other-orbit). The spin-orbit interaction gives rise to terms proportional
to L,-S, and acts to couple the orbital angular momentum of the /th electron
to its spin angular momentum so as to form a total J,.

Both types of interaction, electrostatic and magnetic, arc present in any
particular atom, However, the magnetic interactions are usually weaker. For
example, in light atoms, the electrostatic repulsions are of the order of ~ 1 ¢V,
whereas the spin-orbit potential energy is of the order of ~10-4to ~10-" eV,
Hence the angular momentum coupling in a light alom is as follows:

1. The orbital angular momenta L, i - 1,2,..., N, couple lo form a
total orbital angular momentum

L 3L, (9.19)

and the spin angular momenta S, couple to form the total spin
angular momentum

S Mm_. (9.20)

This coupling is established at the level where only the elecirostatic
interactions are included in the Hamiltonian.

2. The weaker magnetic interactions act to couple L to S 50 as to form
the total angular momentum of the atom

J=L+8. (9.21)

This particular conpling scheme, in which the electrostatic interac-
tions dominate the magnetic interactions and are thereby included in
the Hamiltonian first, is called Russell-Saunders coupling.”

In heavy atoms, the electrostatic repulsion terms are of the order of ~10* eV
for the inner electrons and the magnetic or spin-orbit terms are of the order of
~10* eV, Thus an alternate coupling scheme is more appropriate;

1. Each clectron’s L, and S; couple via the magnetic interactions to
yield

J,=L +8, i=1,2,...,N (9.22)

TSome authors refer to this process as LS coupling.
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2. The influence of the clectrostatic interactions then couples the J,
together to form

3= (9.23)

This scheme is called j-f coupling and is generally less common than
Russell-Saunders coupling.

Regardless of which scheme is used, the vector coupling proceeds accord-
ing to the familiar rules of Chapter 7. If both electrostatic and magnetic
interactions are taken into account, the individual ¢,, m,,, m,, ji. m,, L, M,
S, and M, are no longer good quantum numbers. Only J and M,, corre-
sponding to the magnitude of the total angular momentum of the atom and
its projection along the 2 axis, are good quantum numbers of the system. The
important point is that the question of which quantum numbers are good
quantum numbers can be answered only in the context of a particular form of
the orbital approximation, For example, in the isolated electron approxima-
tion, where each electron completely ignores its fellow electrons, LY, S7, (L,),,
(S,),, J,and (J)), i = 1,2,..., N, all commute with the Hamiltonian; there-
fore {,, m,, 5, m,, j;, and m,, are all perfectly good quantum numbers and
can be used to label states of the atom.

Exercise 9.2 Show that (L), does not commute with V'(r; — r;) = e?/r;
and thus does not commute with the Hamiltonian JC or Eq. (9.3). Show
also that (L) -+ (L,); does commute with V'(r, —r,) so that L,
¥ 1 (L;), commutes with JC,

Because it is more frequently encountered, let us consider Russell-Saunders
coupling in some detail.

9.5 RUSSELL-SAUNDERS COUPLING

In this case, the relevant equations are (9.19) to {9.21). The quantum numbers
associated with the operators L%, §2,J2,L,, S.,,and J.are L, S,J, M, M, and
M), respectively.

Exercise 9.3 Draw a set of vector diagrams like the one in Fig. 7.1,
illustrating Russell-Saunders coupling for a two-electron atom.

In the approximation in which spin-orbit coupling terms are neglected,
eigenfunctions can be labeled by the quantum numbers {n, L, S, M., and M}
or by {n, L, S, J, M,}. In improved approximations, in which spin-orbit
interactions are included in the Hamiltonian, we must use the latter set—for
M, and M are no longer good quantum numbers—and in the vector model
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we picture the “precession of L and S about J” (sec Prob. 9.4). Thus the
appropriate set depends on two interrelated factors: (a) the strength of the
spin-orbit interaction tending to couple L and 8 and (b} the accuracy to which
we wish to treat the system.

How can we determine the new quantum numbers, given the assigned
values of n,, €,, m,, und m,, for cach clectron? The relationships are familiar
from the treatment of angular momentum coupling in Sec. 7.3 and the one-
dimensional model of Scc. 8.4. For example, the allowed values of M, and
Mg are given by

o
M, =3 m, (9.24)
(=1
N
My Mms._. (9.25)
1

and the cigenfunctions y, in the orbital approximation satisfy

Ly, = M. hy,, {9.26)
S, = Mshy,. (9.27)
Similarly, it is easy to determine the allowed values of L and § for, say, a

two-clectron atom. Generalizing the rules of vector coupling in Chapter 7,
we have

h. _N— = ﬂp_..u. -ﬂ— _ “u. AW.MWV
and S=0,1, (9.29)

where we have assumed that (n,£,) &= (1,£,)." Of course, for a given L and S,
M, and M are given by

M,=—L,...,L, (9.30)
Ms— —S,...,5. (9.31)

These relations are consistent with Egs. (9.24) and (9.25). Given values for L
and S, the allowed values of J and M, are

J=|L—8],....L+ 5, (0.32)
My==J...,/J (9.33)

Notice that
M; =M, + M. (9.34)

Exercise 9.4 Prove that the only allowed values of L and .S for a closed-
shell configuration are L == 0 and § = 0,

EMore complicated cases are treated similarly. See Prab. 9.2,
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In addition to labeling states of the system, these quantum numbers provide
useful labels for the energy levels of the atom.

Atomic Terms

We expect the energy of a particular level to depend on L and S (and J if
spin-orbit interactions are not ignored) but not on M, M, (or M,). Therefore
we may label the levels by their atomic terms, which are written *S*!L, where
we use letters S, P, D,...for L =0,1,2,.,., The superscript 28 4 1 is
called the multiplicity of the level; that is, singlet, doublet, triplet, and so on.
For example, states with § — 0 and L = 2, arising from the same configu-
ration, are collectively referred to as the ' Dterm, In the approximation where
spin-orbit effects are ignored, all states of a given term are degenerate. In
general, a term 1L is (25 - 1)(2L 4- 1)-fold degenerate. For example, the
3P term of carbon (15225*2p?) is ninefold degenerate.

In the Russell-Saunders coupling scheme, the subscript J can be appended
to the lerm designation to indicate one of the allowed values J = |L — §|,
..., L - 8. For example, for L, = 1, § = 1—a ?P term—we have *P,, *P,,
3P,. We may refer to these as sublevels; they are degenerate as long as the
spin-orbit interaction is ignored. We shall return to this point in our discus-
sion of Hund's rules, Each sublevel *$+'L, is (2J + 1)-fold degenerate, and
obviously the sum of the degeneracies of all sublevels must equal the degen-
eracy of the corresponding term. For example, the sublevels Py, *P,, * P, are
one-, three-, and five-fold degenerate, respectively, for a total nine-fold
degeneracy as required. Of course, when the spin-orbit interactions are
considered, the degeneracy between different J sublevels is lifted. However,
the (27 + I)-fold degeneracy of each sublevel remains. This degeneracy can
be removed by application of an external magnetic field; this is the Zeeman
effect again (sce Prob. 9.5).

Implied Terms?

It might seem a trivial matter to determine the terms for, say, the ground
state of a particular atom. We merely write down the quantum numbers of
the equivalent clectrons in partially filled shells and couple them according to
the rules of Egs. (9.28) to (9.33). (Note that closed shells and subshells
contribute nothing; see Exercise 9.4.) Doing so for carbon, which has two
equivalent 2p electrons, we obtain the terms shown in Table 9.1. However, we
have completely neglected the Pauli exclusion principle, which restricts the
quantum numbers of the electrons in the atom and forces us to discard some
of the terms in the table.

9The method outlined in this subsection follows closely the discussion in Peter
O'D. Offenhartz, Atamic and Molecular Orbirad Theory (New York: McGraw-Hill, 1970),
Chap. 6.
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Table 8.1

Atomic terms and subievels obtained by applying Russell-
Saunders coupling to the carbon atom. Only 'S, ' Dz, P, and
1P, remain after the Pauli exclusion principle has been taken
into consideration,

L S J Term Sublevels

0 0 0 S L5

1 0 1 p e,

2 0 2 ‘D 1D,

0 1 i 8 5

1 1 2, 1,0 p P3P AP,

2 1 3,2,1 ip 3D,, D, 3D,
Table 9.2

Values of mi,, Me,, My, and m,, allowed by the Pauli cxclusion
principle for carbon (1522522 p2) and resulling values of My and

Ms.
Entry m; M, My
-1 0 +1
1 11 -2 0
2 11 0 0
3 11 2 0
4 1 1 -1 1
5 1 ! -1 0
6 i 7 —1 0
7 l L -1 -1
8 1 - i 0 1
9 1 ! 0 0
10 L 1 0 0
i1 1 ! [ I |
12 1 1 1 |
13 1 ! 1 0
14 1 i 1 0
15 1 l 1 -1

To illustrate, we begin by listing the allowed values of m,, and m,, (valence
electrons only) and the resultant values of M, and M for carbon in Table 9.2,
Since Exercise 9.1 showed that there are 15 degenerate Slater determinants
for the ground state of carbon, we expect to find 15 entries in the table. Each
entry in this table corresponds to one allowed state of the system. We now
list the number of states with a particular M, and M; in Table 9.3a, which is
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Table 9.3a
First Tmplicd-Terms Table

My
Mg 1 0 -1
2 0 1 0
1 ) 2 i
V) 1 3 1
1 I 2 1
-2 0 1 0

called an implied terms table. We shall use it to determine the allowed terms
for carbon.

First, consider the largest possible vaiues of L and §: L —2and § = L.
These valucs give rise to the *D term in Table 9.1. If they were allowed,
entries corresponding to M, = 2 and M — | would have to appear in
Table 9.2. A glance at the table shows that they do not. We must discard the
3D term and the sublevels 2D,, *D,, and *D, as disallowed by the Pauli
principle,

Now we turn to the next largest values: L = 2, § == 0. This is the 'D
term. Since there are entries in Table 9.2 with M, = 2, My — 0, we know that
this term is allowed. The ! D term corresponds to five states, depending on
whether M, = —2, —1, 0, 1, 2. Each state is a singlet and has one of M,

—32, —1, 0, 1, 2. Consequently, we have determined the nature of five of
the states in Table 9.3a. Subtracting these states from the table yields Table
9.3b (we subtract 1 from each element in the second column). We look next
at L = 1, § = 1—that is, the *P terms. Entries with M, = —1, 0, +1 and
Mg = —1, 0, I remain in Table 9.3b, so the *P,, *P,, and *P, sublevels are
allowed. They correspond to nine states altogether. Substracting them from
Table 9.3b, we obtain Table 9.3c. But only one state is left in Table 9.3c. It

Table 9.3b
Second Implied-Terms Table

1 0 -1

2 0 0 0

1 1 1 1
0 1 2 1
-1 1 1 1
-2 0 0 0
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Table 9.3¢c
Final Tmplied-Terms Table

M,
M 1

N — 0 = 3
[=J == =
Lo -0 0 (=}
oo oo

has M, — 0, M = 0 and gives the 'S term. Thus this term is allowed; and
since no more states remain, the terms 15 and 'P arc forbidden. We have
shown that of all the atomic terms that might be generated by Russell-
Saunders coupling for carben, only the terms 'S, *P£, and ' D are allowed by
the Pauli exclusion principle.

Precisely the same analysis holds for any atom with two equivalent p
clectrons outside closed subshells. The implied-terms method is a convenicent
bookkeeping procedure and can be applied to any configuration (sec Prob.
9.2).

To complete our picture of the quantum mechanics of multiclectron
atoms, we must know how the terms obtained above are ordered in energy.
This js the subject of Sec. 9.6. Also unresolved at this point 15 the question of
precisely which of the many degenerate Slaler determinants conslitute a
particular wave function for state y = (S, L, M, M). To answer, we must
actually construct the eigenfunction of interest. This topic is discussed in
Prob. 9,3,

8.6 HUND’'S RULES

It is now possible to determine the allowed atomic terms corresponding to a
particular electronic configuration. For example, in carbon we found 'S, * P,
and ! D; each sublevel 1S, ' D,, *P,, 3 P,, and * P, arising from these terms has
a different cnergy when spin-orbit interactions are included in the Hamil-
tonian. We would like to know these encrgics. However, Chapter 7 has
demonstrated that actual calculation of the shift and ordering in energy of
these levels can be a time-consuming and difficult process. Fortunately, a set
of rules exists that enabies us to avoid such calculations if qualitative rather
than quantitative results are satisfactory. Called Hund's rules, they providean
estimate of the ordering in energy of the levels and sublevels for the case of
equivalent electrons in the ground configuration.
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RULE 1: The terms(s) arising from the ground configuration with the maximunm
mudtiplicity (28 4- 1) fies lowest in cnergy.

Ruic | can be understood by generalizing the spin-pairing arguments of
Sec. 8.3 to three-dimensional muitielectron atoms. Recall that in the two-
electron case, we found that like spins (unpaired spins) “repel” and unlike
spins (paired spins) “attract.” In a mulliclectron atom, a state with high
multiplicity contains a greater number of electrons with parallel spins than
does onc of low multiplicity. Since these clectrons all “avoid one another”,
the encrgy of the state with high multiplicity lies below that of a state with
low multiplicity.

RULE 2: Of several levels with the same multiplicity, the ene with the maximum
value of L lies lowest in energy.

Rule 2 can also be crudely understood as a consequence of the electrostatic
repulsion of electrons. In a state of large orbital angular momentum quantum
number L, the electrons can be thought of as orbiting “in the same direction.”
Such electrons can remain scparated from one another at all times and so
have a lower encrgy than do electrons “orbiting in the opposite dircction,”

which must approach one another at some time.

RULE 3: Of several sublevels with the same multiplicity and total quantum
number L:

(a) the sublevel with the minimum value of 1 lies lowest in energy if the
configuration has a shell that is less than half-filled;

(b) the sublevel with the maximum value of ) lies lowest in energy if the
configuration has a shell that is more than half-filled.

Rule 3 is primarily a consequence of the spin-orbit interaction plus the fact
that the electrostatic potential energy increases as r increases.'® If we apply
Hund’s rules, together with our knowledge of the effects of electrostatic and
magnetic interactions for Russell-Saunders coupling, to carbon, we obtain the
energy level diagram of Fig. 9.1. (The splittings in this diagram are not
exactly to scale,)

As with the Aufbau principle, Hund's rules provide a simple rule of thumb
for determining features of atomic structure. They, too, break down in some
cases. The reason for this breakdown lies at the very core of the orbital
approximation. In writing an electronic configuration, all we must specify is
how electrons are placed into subshells, The actual distribution of electrons
in a particular quantum mechanical state is sometimes more accurately

10]n case (a) the sublevels are called regular multiplets; in case (b) they are called
inverted multipless. /
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described by a mixture of more than one such configuration. A detailed dis-
cussion of this phenomenon, called “configuration interaction” (or configura-
tion mixing), is beyond the scope of this book.

9.7 CONCLUDING REMARKS: j-j COUPLING

We suggested in Sec. 9.4 that Russell-Saunders coupling is not applicable to
heavy atoms because the magnetic interactions, which tend to coupie the spin
and orbital angular momenta of the individual electrons to one another to
form J, = L, 4 S,, become_more important than the electrostatic interac-

tions,
An alternative to Russell-Saunders coupling is j-f coupling; the relevant
equations are (9.22) and (9.23). The quantum numbers of the individual

electrons j, and my, are, for a given £, (= 1) and 5, = 4,
h=0—5{+ 4, (9.35)
My, = —fu.esdn (9.36)

The individual total angular momenta J, then couple to give the total J. For
a two-electron atom, the quantum numbers J and M, are simply

J=jy —jalseeesdy + Jas (9.37)
M,=—1,...,J (9.38)
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The ievels are labeled by J and (j,, j,) rather than by term designations as in
Russell-S8aunders coupling (see Prob. 9.6).

In general, the level corresponding to all electrons having the smallest
values of j; will lie lowest in energy. Thus in the case of lead (Pb), which has an
np* valence configuration built on a closed shell (see Appendix 5), we find
levels ordered as (4, 4), (3. 4), and (3, 4). Usually the level with the lowest
value of J for given j, and, lies lowest in energy; however, this should not be
taken as a strict rule.

Two final comments are necessary. First, for many medium-weight and
heavy atoms, neither Russell-Saunders nor j-f coupling is precisely accurate;
the clectrostatic and magnetic interactions are of comparable magnitude. In
such a case, a much more complicated scheme must be employed. Second,
there is a relationship between the two schemes. This point is illustrated in
Fig. 9.2, which shows schematically the transition from pure Russeli-
Saunders coupling in a light element of Group IV of the periodic table to
nearly pure jj coupling in the heaviest element in Group IV. Notice that all
the atoms in Fig. 9.2 have the same valence configuration (np2). The lines
from left to right corrclate the two extreme limits connecting levels of the same
total angular momentum quantum number J.
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Figura 9.2 lllustration of the “correlation” of Russell-Saunders and f-f coupling schemaes for
Group IV atoms {elactronic valence configuration : np?). {From £. W, Atkins, Molecular Quantum
Mechanics, Vol, 2. Oxjord: The Clarendon Press, 1970.)

So ends our discussion of atomic structure. It would easily be possible to
spend many more pages improving our understanding of atomic properties
and exploring the oddities of the periodic table. We refer the interested
reader to the references below instead.



