19. Let's calculate the long wavelength “spectral index” of dust emission. The spectral index, α, is defined as the power-law slope of the observed flux density over some range of wavelengths: $F_\nu \sim \nu^\alpha$. Consider an **optically thin** source of dust emission with emission well described by a source function $B_\nu(T_d)$ over a solid angle Ω, and dust mass opacity parametrized by $\kappa(\nu) = \kappa_0 \left(\frac{\nu}{\nu_0}\right)^\beta$ (cm2/g of dust) at long wavelengths. Assume that the source is small and $F_\nu = I_\nu \Omega$ is a good approximation.

(a) How does the dust optical depth τ_ν depend on frequency?

(b) In the Rayleigh-Jeans limit at long wavelength what is the spectral index α for (1) blackbody emission and (2) for optically thin dust emission with a dust opacity index of β? Dust emission has a “steeper spectral index” than blackbody emission (see Figure).
20. Consider an optically thin dusty disk surrounding a young protostar with luminosity L_{star}. In this problem, you will derive how the temperature of dust grains varies with distance, r, from the star.

(a) Assume the dust opacity at long wavelengths is given by a power-law $Q_{\text{abs}} \sim \nu^\beta$. Derive the dependence of T_d with r and β. I just want you to write down how T_d is proportional to r and β (don’t have to write out all the constants, etc.).

(b) In typical ISM dust, $\beta \sim 2$, but in young protostellar disks where dust grain start to grow into mm sized grains (“dust coagulation”), we find that $\beta \sim 1$ (or smaller). Large (km) planetesimals would radiate closer to a blackbody and would have $\beta \sim 0$. Thus, there is significant evolution in the opacity (Q_{abs} or κ_{ν}) of dust grains in planet-forming disks (see Figure below for a calculation of how β at long wavelengths varies with size of grains). Calculate the power-law indicies of T_d with r for $\beta = 2$, 1, and 0 (simplify any fractions).

Testi et al. 2013 PPVI Review