


Example Neutral (H or H₂) Collision Rates

Table 4.2. Rate Coefficients (cm³s⁻¹) for Deexcitation by H and H₂

Temperature T (°K)	10°	30°	100°	300°	1000°
$10^{11} \times \gamma_{ki}$ for H–H	0.23	3.0	9.5	16	25
$10^{10} \times \gamma_{kj}$ for H-C ⁺	6.9	7.4	8.0	8.4	9.7
$10^{12} \times \gamma_{20}$ for H-H ₂	0.96	1.37	3.0	9.1	42
$10^{11} \times \gamma_{10}$ for H ₂ -CO	1.8	3.2	3.7		

Spitzer - Physical Processes in the ISM

Table 4.1.	Collisi			Excitation by Electrons		
Number of p electrons	ion	Lower	Upper	$E_{jk}(eV)$	$\Omega(j,k)$	$\sum_{j}A_{kj}(s^{-1})$
1,5	CII	² P _{1/2}	² P _{3/2}	0.0079	1.33	2.4×10 ⁻⁶
	Ne II	$^{2}P_{3/2}$		0.097	0.37	8.6×10^{-3}
	Si II	$^{2}P_{1/2}$		0.036	7.7	2.1×10^{-4}
2	NII	$^{3}P_{0}$ —		0.0061	0.41	2.1×10^{-6}
		$^{3}P_{0}$ —		0.0163	0.28	7.5×10^{-6}
		$^{3}P_{1}$ —	$^{3}P_{2}$	0.0102	1.38	7.5×10^{-6}
		³ P —		1.90	2.99	4.0×10^{-3}
		³ P —		4.05	0.36	1.1
	OIII	$^{3}P_{0}$ —		0.014	0.39	2.6×10^{-5}
		${}^{3}P_{0}$ —		0.038	0.21	9.8×10^{-5}
		$^{3}P_{1}$ —		0.024	0.95	9.8×10^{-5}
		³ P —		2.51	2.50	2.8×10^{-2}
3	OII	³ P —		5.35	0.30	1.8
	OII	4S _{3/2}		3.32	0.88	4.2×10^{-5}
Physical		$^{4}S_{3/2}$		3.32	0.59	1.8×10^{-4}
es in the ISM		$^{2}D_{3/2}$	-D5/2	0.0025	1.16	4.2×10^{-5}

