Optically Thin Absorption

Hα line
Gaussian Line Profile
(Thermal motions dominate)
Optically Thin Absorption

Equivalent Width Linear Growth $\tau < 1$

- $\tau = 0.1$ (red)
- $\tau = 0.2$ (green)
- $\tau = 0.4$ (blue)
- $\tau = 0.8$ (violet)
Optically Thick Absorption

Equivalent Width begins to “saturate”
Very Optically Thick ($\tau > 5$) Absorption

For a Maxwellian distribution, wings grow slowly because of exponential drop off in number of absorbers at high v. Must now consider natural broadening profile…

Equivalent Width Only growth in “wings”
Comparison Gaussian vs. Lorentzian Profiles
Comparison Gaussian vs. Lorentzian Profiles

Gaussian vs. Lorentzian Profiles

6562 6562.5 6563 6563.5 6564
Curve of Growth – Absorption Line

Figure 9.22 A general curve of growth for the Sun. (Figure from Aller, *Atoms, Stars, and Nebulae*, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)
PROBLEM – Derive this expression for $N(\text{CH}^+)$

The column densities of optically thin lines given in the last columns of Tables A.1 and A.2 are derived assuming a low excitation temperature $T_{\text{ex}} = 3$ K (a valid assumption for the components associated with the diffuse gas along the LOS):

$$N(\text{CH}^+) = 3.11 \times 10^{12} \int \tau \, d\nu \, \text{cm}^{-2}$$

$\text{CH}^+ \ 1-0$
835.137504 GHz
$A_{10} \sim 6.4 \times 10^{-3} \, \text{s}^{-1}$
$g_1 = 3, \ g_0 = 1$

Falgarone et al. 2010