The Big Bang Theory & Expansion of the Universe
What is our physical place in the universe?

- Our “Cosmic Address”
Example: the Sun's Spectrum
Example: the Sun’s Spectrum
Distinct energy levels lead to distinct emission or absorption lines.

Emission: atom loses energy

Absorption: atom gains energy
Doppler Shift
Definition: Redshift

- The measure of the amount a spectral line is shifted in wavelength
<table>
<thead>
<tr>
<th>Cluster nebula in</th>
<th>Distance in light-years</th>
<th>Redshifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgo</td>
<td>78,000,000</td>
<td>H + K, 1,200 km s(^{-1})</td>
</tr>
<tr>
<td>Ursa Major</td>
<td>1,000,000,000</td>
<td>H + K, 15,000 km s(^{-1})</td>
</tr>
<tr>
<td>Corona Borealis</td>
<td>1,400,000,000</td>
<td>H + K, 22,000 km s(^{-1})</td>
</tr>
<tr>
<td>Bootes</td>
<td>2,500,000,000</td>
<td>H + K, 39,000 km s(^{-1})</td>
</tr>
<tr>
<td>Hydra</td>
<td>3,960,000,000</td>
<td>H + K, 61,000 km s(^{-1})</td>
</tr>
</tbody>
</table>
Hubble Law - 1929

Originally $H_0 \sim 500 \text{ km/s/Mpc}$
• Galaxies are all moving away from each other, so every galaxy sees the same Hubble expansion, i.e. there is no center.

• The cosmic expansion is the unfolding of all space since the big bang, i.e. there is no edge.

• We are limited in our view by the time it takes distant light to reach us, i.e. the universe has an edge in time not space.
Hubble Constant Determinations

H_0 since 1920

H_0 (km/s/Mpc)

Date
Expansion is Accelerating!

- The plots on the right were the data from supernovae that showed that the expansion of the universe is not constant but has changed value over time.
- More distant supernovae are dimmer than expected.
- Something ("Dark Energy") is causing the expansion to accelerate. We don’t know what Dark Energy is – only that it appears to counteract gravity.
What is the Universe made of?

- Dark Energy: 71.4%
- Dark Matter: 24%
- Atoms: 4.6%
Cosmology: What We Know

1. Redshift – it’s cosmic expansion, *not* Doppler
If the Universe is expanding, then reversing that expansion (going backwards in time) indicates that the Universe must have been smaller in the past.

A Expanding two-dimensional flat space

B Later during the expansion: The galaxies are farther apart
Blackbody (Thermal) Radiation

Temperature increasing
Two Properties of Thermal Radiation:

1. Hotter objects emit more light at all frequencies per unit area.
2. Hotter objects emit photons with a higher average energy.
Infrared Light – Human Body Glows!
Discovery of the Cosmic Microwave Background

1964

Bob Wilson

Arno Penzias
2. Background Radiation – thermal, at 2.73K
Measuring the Cosmic Microwave Background

$T = 2.725 \, \text{K}$

$\Delta T = 3.35 \, \text{mK}$

$\Delta T = 18 \, \mu\text{K}$

$\Delta T = 18 \, \mu\text{K}$

WMAP
An image of quantum fluctuations blown up to the size of the universe
The cosmic microwave background Radiation’s “surface of last scatter” is analogous to the light coming through the clouds to our eye on a cloudy day.

We can only see the surface of the cloud where light was last scattered.
Planck Satellite
3. Galaxies in past look younger (smaller and more irregular)
Age of the Universe
Today: 14 Billion Years

Elliptical

Spiral
Galaxy Formation Simulation
Courtesy Charlotte Christensen
4. Abundance of the Lightest Elements

The lightest elements — hydrogen, helium, and a smattering of deuterium (heavy hydrogen isotope) and lithium — were from the big bang itself, produced by fusion in the first three minutes when the universe was as hot as the core of a star like the Sun!
Big Bang Fusion

Nuclear fusion in first 3 minutes
The predictions match observations!

The graph shows the abundance of different elements as a function of density. The curves represent theoretical predictions, and the horizontal bands indicate observed abundances. The WMAP measurements have matched the observed ratios of matter to photons, confirming the accuracy of the predictions.

- Y(\(^4\text{He}\))
- D/H
- \(^3\text{He}/\text{H}\)
- \(^7\text{Li}/\text{H}\)

The y-axis represents abundance, ranging from \(10^{-12}\) to 1, and the x-axis represents density of matter/photons, ranging from \(10^{-11}\) to \(10^{-8}\).
There is evidence for expansion, and the universe was hotter and denser in the distant past.

The microwave background and the helium abundance cannot easily be explained in any other way.

There are hundreds of thousands of big bang photons in every breath you take: the big bang is all around us.

It is a theory, but a theory with a web of evidence to support it. The theory is mute about the cause of the cause.
A Schematic Outline of the Cosmic History

- The Big Bang
 The Universe filled with ionized gas
- The Universe becomes neutral and opaque
 The Dark Ages start
- Galaxies and Quasars begin to form
 The Reionization starts
- The Cosmic Renaissance
 The Dark Ages end
- Reionization complete, the Universe becomes transparent again
- Galaxies evolve
- The Solar System forms
- Today: Astronomers figure it all out!

S.G. Djorgovski et al. & Digital Media Center, Caltech
How do our lifetimes compare to the age of the Universe?

• The Cosmic Calendar: a scale on which we compress the history of the universe into 1 year.
• This is a time scale model where 14 billion years equals 1 year, i.e. 14,000,000,000:1.
• Our lives would scale similarly, so 80 years goes down by a factor of 14 billion too.
• In the scale model, a human life is about 2 tenths of a second!
The Cosmic Calendar: January-November

January 1 (15 bya): Big Bang

March 20 (12 bya): Galaxies form

October 6 (3.6 bya): Life established, first fossils, photosynthesis (?)

September 2 (5 bya): Formation of our solar system

September 14 (4.5 bya): Earth formed

October

November 14 (2 bya): Complex single cells

November 19 (1.8 bya): Free oxygen

November 21 (1.7 bya): Evidence of multicellular organisms (?)
Now home in on the more recent span of the history of life and of humans and civilization.
The Raw Material for Astrobiology

- **Space:** the potential habitable worlds around ten thousand billion billion stars; ours is just one.

- **Time:** a cosmic history of nearly 14 billion years; life took less than ½ billion years to start here.

“If they not be inhabited, what a waste of space.”

Thomas Carlyle, Scottish Essayist (1795-1881)