Chapter 1 6

Vibrational Spectroscopy

Vibrational spectroscopy provides information on bond lengths, bond strengt
and molecular geometry. In addition, it has been a valuable tool for ch_emul“
analysis, identification of characteristic groups in molecules, and monitori
intermolecular interactions. _

The first section of this chapter describes a simple but useful mod! li}_l
vibrational motion. This model—the harmonic oscillator—is then used |
explain the observed vibrational spectra of diatomic molecu!es. Tl?e featum_di
vibrational spectra that cannot be described by the harmonic oscillator moll
are examined in the following section. Since rotational changes accompi:
vibrational transitions, the rotational structure of vibration?l bands i ﬂl
described in this chapter. Bond lengths and molecular geometries may be dewl
mined from these rotational transitions by the methods described in the previil
chapter. . . B
Vibrational spectra of polyatomic molecules, with emphasis on triatofi
molecules, are also described in this chapter.

16.1 THE HARMONIC OSCILLATOR MODEL

Very generally speaking, any device that interconverts potemi'al encrgy 4
kinetic energy repeatedly is an oscillator. Some examples of oscillators sl

simple pendulum, a mass on a spring, and vibra!ing {nolccyles.
P We will consider a single-particle oscillator in this section. If the dynasi

of the oscillating particle are governed by the force
= —kq 1l
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where q is the displacement, it is called a harmonic oscillator. The constant k
is called the force constant. Equation (16.1) is very useful in describing small
displacements from equilibrium.

The harmonic oscillator has been a persistent model throughout the history
of physics. It was first proposed by Hooke in 1670 and has appeared in a variety
of physical theories ever since.

Classical Picture

For a single-particle oscillator subject to the force given in Eq. (16.1), Newton's
second law is

'

G =—ka (16.2)

A particular solution for this differential equation is

e \/,E; (163)

Here g, is the maximum amplitude. (This particular solution corresponds to
setting g = 0 when ¢t = 0.) According to Eq. (16.3), the position of the particle
varies sinusoidally and has a maximum displacement of g, (Fig. 16.1). The
argument of the sine function changes from 0 to 2 during one period of
oscillation. Hence the period of oscillation 7 is given by

\/—Et =2r {16.4)
m

The frequency of oscillation v, (s~') is therefore related to the force constant
by the expression

m

| i k
Vo=_=5- [ (16.5)
We see from this equation that the frequency of the oscillator does not depend
on the displacement. Hence v, is called the natural frequency of the oscillator.
The quantity w,, where

Wy = 21y, (16.6)

is called the angular frequency or simply the frequency.
The potential energy of the oscillator is given by

V= —fqu=§kq= (16.7)

where we have set the integration constant equal to zero. This corresponds to
assigning V = 0 at ¢ = 0. Figure 16.1 also illustrates the potential energy func-
tion for a harmonic oscillator.

It is the potential energy (or force) that controls the dynamics of a system.
The difference between a particle in a box and a harmonic oscillator, for example,
is in their potential energy. When comparing different systems, it is sometimes
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Figure 16.1. Pictorial representalion ol? a
harmeonic oscillator (left) and a particle in a
box (right). Here the particle is represented
as moving within some bounds. Just as we
interpret the particle-in-a-box motion as
linear motion between two limits, we may
visualize the harmonic oscillator as a
particle rolling in a potential box. Both
classical and quantum mechanics tell us that
the frequency of oscillation of a harmonic
oscillater is independent of the amplitude of
displacement. We should keep in mind that
these pictures are strictly classical.

convenient to think of the potential energy function as & well {with‘ an appi
priate number of dimensions) and the particle (or particles) as rolling in i
particle in a box, for example, is in a well with steep walls. A harmonic ox!
lator, in contrast, is confined to a parabolic well. Figure 16.1 shows how 1k
shape of the well influences the dynamics of the particle.

Time

Example 16.1

In Einstein's theory of specific heats, the atoms in 8 monatomic crystal are suppos! -
execute simple harmonic motion. The experimental data on graphite may be rativadlli
if we assume that carbon atoms oscillate at 1.0 x 10! s~ !, Calculate the force cosiii
for carbon atoms in graphite.

From Eq. (16.5) we have
k=4nvim Ll
Substitution of mass and frequency into this expression gives
120 x 1073 kg mol !
6.02 x 102* mol !
=78x10"3kgs ?=78x10"3IJm *orNm™*

k=4n3(1.0 x 1011 571
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Quantized Energies

The Schrodinger equation for a harmonic oscillator is

. 2 2
Ay = (—%n-%f + %k@’) V= Ey (

where the first term in the Hamiltonian is the operator for kinetic energy
the second is the operator for potential energy. The following results car
appreciated without going through the mathematical details involved in sol
the Schrodinger equation,

The quantized energies of a harmonic oscillator are given by

E, = hvg(v + 1) (1€

where v =0, 1, 2,. ... In this equation k is the familiar Planck’s constant, 1
the natural frequency, and v is the vibrational quantum number, The quant
tion of harmonic oscillator energies is a consequence of the boundary conditi
The wave functions must vanish as ¢ = =+ co. Figure 16,2 shows a few of
allowed energies.

Spectroscopic data are often reported in wave number units (cm ~*). He
Eqg. (16.9) may be written in an alternative form:

G(u)=%='ﬁ(v+é—) (1€

where G(v) is called the spectroscopic term and ¥ is the wave number.

Besides quantization of energy there is another important difierence
tween the classical and the quantum descriptions. The classical oscillato
allowed to have zero energy. The quantum oscillator, on the other hand, n
have a minimum energy of thv, corresponding to the v = 0 level. If it had :
energy, that is, if it was at the bottom of the well with zero momentum,
uncertainty principle would be violated.

The Wave Functions and Probability

The wave functions for the harmonic oscillator are given by

(B/ny

= -§32
Y6 = 55— HolQe (16
where ¢ is a weighted displacement,
¢=Bq (6
and the constant f is related to the force constant by the expression
2
= Tﬂ Jmk (16
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Figure 162. First three encrgics of a
harmonic oscillator. (From H. Eyning,
1. Walter, and G. E. Kimball, Quantum
Chemistry, New York: John Wiley, 1944.)

In Eq. (16.12) H,({) represents the Hermite polynomials, the first six of wh!
are

Ho(t)=1 Hy(8) =88 —12¢
H(()=2¢ H (&) = 1684 — 482 + 12 (16,17
Hy() =45 -2 H() = 328% — 1603 + 120¢

A few of the wave functions is Eq. (16.12) are plotted in Fig. 16.2. .

The classical oscillator has the largest kinetic encrgy, a|_1d lhcrel.'_orc i
maximum velocity, when g = 0. Hence it spends the least time in lt!e neighbsi
hood of g = 0; that is, the particle has the lowest probablhty_deqmly atgel
At the two extrema of displacement the oscillator has zero kinetic energy o
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Wit 163, Classical (dashed lines) and
~Mitem (solid Lines) probabilities for a
“iile oscillator. (a} For v = 0 and (b) for
|1 Note that the quantum and classical
“ilfitlons differ markedly lrom each other
Jow v values, As v gets larger, however,
ilem theory predictions approach those
F&hl mechanics, (From L. Pauling and
i Wition, Introduction te Quantum
U higsies, New York: MeGraw-Hill, 1937,
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thus spends the greatest amount of time there. Consequently the probability
density is highest at the turning points. The quantum oscillator, on the other
hand, has the highest probability in the neighborhood of g = 0 for the v = 0
state. As v gets large, however, quantum probabilities approach the classical

value. Figure 16.3 illustrates the classical and the quantum probabilities for a
harmonic oscillator,

Tunneling

Tht? quantum oscillator penetrates into regions not allowed for the classical
oscillator. Consider point A in Fig. 164, Let the potential and kinetic energies

at this point be V, and T,, respectively. From the conservation of energy we
have

T +V,=E,
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where E, is the total energy represented by the horizontal line in Fig. 16.4. Sin®
V, > Eq, this condition is satisfied only if the kinetic energy is negative! Such/
possibility does not atise in the classical world of particles, for negative kinet:
energy implies imaginary velocity. Hence the particle cannot cross the pol:
of intersection in Fig. 16.4 according to the classical theory. In quantum theot
the behavior of objects (which are both waves and particles) is governed 1
the wave function, which must be continuous if the potential energy van:
continuously. The continuity condition leads to tunneling, that is, to nonzt"
probability for an object even in the classically forbidden regions.

Selection Rules

A harmonic oscillator subjected to electromagnetic radiation undergoes i
sitions between different energy levels. Only transitions between neighboriy
energy levels are allowed. The selection rules for the change in the vibration

quantum number v are
Av=+1 (1618

where the positive sign corresponds to absorption, and the negative, to emissio

Example 16.2

Assume that all the stoms in Example 16.1 are in the v =0 vibrational level. (Thk |
the case at low temperatures.) What fraction of the atoms will you find within +0.00#
of their equilibrivm position?

We will first evaluate the probability density at g = 0. From the wave functos i

Eq. (16.12) we havc
ﬂ 12
pol0) = Y5(0) = (-)

T

From Eq. (16.14) we have
Jmk

From the force constant calculated in Example 16.1, we have

H (™=
i

B _ 2 12 % 1073 kg mol !
T 662 x 1073*1s]| 602 x 10** mol !
=38 x10"m?

12
(78 x 1072) m'l)]

n
and

B\
p0(0)=(;) =62x 10°m™!

The fraction of atoms between 0.01 and —0.01 nm is the same as the prohadill
between these limits. Hence the fraction f is given by

I = pol®g = pel0)[0.01 — (—0.01)]
= (6.2 x 10° m ")(0.02 x 10"° m) = 0.12

434 Part 1l Quantum C

165 Vibrational motion of a

‘41 RO-VIBRATIONAL SPECTRA OF DIATOMIC MOLECULES

We have developed the theory of vibration for a model. Can we use this for
real molecules?

Diatomic Molecule as a Harmonic Oscillator

We will now show that the kinetic energy of a diatomic molecule is identical, in
tt}athen}atlcal form, to that of a harmonic oscillator. The kinetic energy of a
diatomic molecule is given by

T = }m, X} + m,X?3) (16.17)

where X, and X » are the velocities of the atoms (see Fig. 16.5).

Displacements of the atoms are not independent of each other since
vibrational motion leaves the center of mass and the orientation of molecules
unaitered. Therefore,

mX, = —mX, (16.18)
If we add m, X, to both sides of the equation, we get
{my + m)X, = myX, — X)) (16.19)
It is convenient to define a “normal coordinate™:
g=X, - X, j=X,-X, (16.20)

We see [rom the above two equations that

ms

X, =—2
Rl i (16.21)
By proceeding similarly, we get
2, =l o
gy (16.22)
Substitution for X, and X, in Eq. (16.17) gives
T = im4? (16.23)
where m, is the reduced mass of the molecules:
. mym,
e (16.24)
¥
(=) =
&
=Xy
=13
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We see from Eq. (16.23) that the vibrational kinetic energy of a diatomic mol ;

cule may be expressed by a single term, just as in the case of a single-parthh
oscillator.

The potential energy between two atoms may be a fairly complicated fund
tion of internuciear distance. But for small displacements from the equilibriv
position, the harmonic oscillator modei is appropriate. Hence one assumes tha
the potential energy of a diatomic molecule is given by Eq. (16.7), with %
understanding that g represents the displacement from the potential enerj
minimum and not the actual coordinates. Thus if R, is the interatomic distans
at the minimum potential energy,

g=R-R, (162°

The Ro-Vibrational Spectrum

Figure 16.6 shows a few vibrational and rotational levels of a diatomic molecud
In most molecules the vibrational levels are widely separated compared to I
rotational levels. For example, the separation between neighboring vibration!
levels in HCl is 3 x 10* cm ™!, while the separation between J =0and J = |
levels is 20 cm ™!, Hence when you measure the spectrum in the infrared, yi!
will notice that rotational changes accompany vibrational transitions.

In the rigid rotor harmonic oscillator approximation, the ro-vibratios!
energies of a diatomic molecule are the sums of the rotational [Eq. (15.27)] st
vibrational [Eq. (16.10)] energies:

E,;=hvlv+3)+BIJ+ 1)
Hence the spectroscopic terms are given by

Gv, )= +H+ BIJ +1)

(160

(1ol
The selection rules for ro-vibrational spectra are

Dipole monent g # 0

Av= +1
Al = +1

(16

Let us consider the v = 0 to v = 1 transition. Since many rotational s
are occupied at ordinary temperatures, we must consider transitions from ah
ferent J levels. In Fig. 16.6 rotational levels belonging to » = 0 are labeled i
J", and those belonging to v = 1 by J'. Figure 16.6 alsc shows the alloss
rotational lines for the v = 0 to v = 1 transition.

The group of lines with AJ = 1 is called the R branch. For the R brasd
J' = J" + 1. Hence the frequency at which the R line appears is given by

Pald”) = G(1, J” + 1) = G(0, 7")
= Ty + 2B(J" + 1)

where J” =0, 1, 2, .. .. This equation shows that the successive R-branch L
are separated by 2B as illustrated in Fig. 16.6.
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e 166, Energy levels and expected
‘ionul-rotational spectrum of a
\limic molecule. Only frequencies of
Hl}giﬁﬂnl are shown; inlensitics of rotation
" dapend on temperature.
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For the P branch of the spectrum, J' = J” — 1. The frequencies of the P
transitions are given by

#p(J") = G(1, J" — 1) — G(0,J")

= §, — 2BJ" (16.30)

where J"=1,2,....

Figure 16.7 shows the measured spectrum of HCl. Table 16.1 gives the
wave numbers for several P and R lines. We see from the data that our model
is quite successful in predicting the qualitative features of the spectrum. On the
quantitative side it has to be refined for a better fit.
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Figure 16.7. Infrared spectrum of HCI gas. 5.0 %20 %.40 %60 8.80 5.00 9.20
The splitting of rotational lines is due to the

two isotopes of chiorine, **Cl and *"CL. 0 5
TABLE 16.1 H"'CI SPECTRUM?
Branch Position (crild) A Branch Position (ctii]) &

R(1Y) 3085.62 P(l) 2865.09

12.86 2.0
R(10) 3072.76 P(2) 2843.56

13.69 12
R(%) 3059.07 P(3) 2821.49

14.19 21
R(B) 3044.88 P(4) 2798.78

14,92 uw
R 3029.96 P(5) 2775.79

15.67 pAR
R(6) 3014.29 P(6) 2752.03

16.51 N
R(5) 2997.78 P(T) 2721.75

16.88 Py
R(4) 2980.90 P(B) 2703.06

17.66 LY
R(3) 2963.24 P(5) 2671.73

18.43 iy !
R(2) 2944.89 P(10) 2651.97

19.03 Y
R(1) 2925.78 P(11) 2625.74

19.53 1M
R(O) 2906.25 P(12) 2599.00

21f HCI were a rigid rotor, the A values wouild not change. Theory that includes [
effects of nonrigidity and anharmonicity is presented in the next section.

Example 16.3 The two neighboring lines with maximum separation are at 4096.6 and 41804 ¢ |

the ro-vibrational spectrum of *H*®F. Calculate the bond length of the moleculs
The maximum separation occurs between the P(1) and R(0) lines. Hence

75(1) = 4096.6 cm ™! and 75(0) = 4180.4 cm ™!

438 Part lll Quantum Chesll

Since the separation between these two lines is 48, we have
B (em™1) = (41804 — 4096.6)/4 = 20.95 cm !
The rotational constant in energy units is given by
B()) = Bhe -
= (20.95 cm™1)(3.00 x 10'% cm 57 !)(6.626 x 1073* J 5)
=4.164 x 10722 ]

The reduced mass of the molecule is given by

1.008 = 19 1 mol
m, = ( X102 kgmol")(—-ﬂ——) = 1.590% 10~ 2"kg

20,008 6.022 x 10**

From Eg. (15.27), which relates the bond length and the rotational constant, we |
R h _ 6626 x 10734 ) s
T (8x*Bm,)"? T [8a(4.164 x 10 22 I)(1.577 x 10727 kg)]'/*
=9.164x10"""m = 91,64 pm

Intensitites

The intensity of a ro-vibrational transition is governed by the population «
level from which it arises. The population in turn is governed by the Boltzr
distribution law. Therefore, the intensities of transitions arising from twq
ferent ro-vibrational levels are governed by the equation

N,',.r — 25+ 1 e“{Ew',J'_Enﬂ'.J""k-r (l
Npoy 20741

Only the degeneracies of the rotational levels appear in the equation sinc
vibrational levels are nondegenerate,

aiple 16.4

Calculate the relative intensities of the P(1) and R(0) branches of 'H'®F at 20.0°¢

Since R(0) originates from the J* = 0 level and P(1) Irom the J" = | lewt
intensities of these two lines are in the ratio of molecules in the respective J* levels, 1

ﬂg=£&l-ze-zmr
120} Ngo !

—24.164 x 10722 J)
(L381 x 10" JK ')(273K)

= Jexp

=241

Except for the degeneracy of the J' = 1 level, the P(1) line would have a
intensity than R(0).

ﬁ_ RAMAN SCATTERING

Rotational and vibrational energies may be deduced from scattering e»
ments, as will be shown in this section. This technique complements the ab
tion studies and offers unique advantages in some cases.
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