
AST 300B - Spring 2017 In-class/take-home Problems Due: Monday January 30

- 8. Consider a thermally emitting cloud at temperature T with a background intensity given by $I_{\nu}(0)$. If we make an observations toward the cloud and subtract an observations made off the cloud, write down the formal 1D solution for the difference measurement $\Delta I = I_{\nu} I_{\nu}(0)$.
 - (a) If you group your factors such that one factor is $(1 e^{-\tau})$, then the other factor tells you the criteria for when you will see emission from the cloud $(\Delta I_v > 0)$ or absorption from the cloud $(\Delta I_v < 0)$. What is the condition required to see the cloud in emission above the background?
 - (b) What is the condition required to see the cloud in absorption against the background?

9. The brightness temperature, T_B , of a source as the temperature that is directly proportional to the observed intensity given by the Planck function, B_v (T_B), in the Rayleigh-Jeans limit ($hv/kT_B << 1$). Radio telescope don't actually measure specific intensity, but instead measure the flux density of the source observed within the diffraction beam of the telescope with solid angle $\Omega = \pi\theta^2/4\ln(2)$ for a FWHM "beam width" of θ . Derive the equation for how T_B is related to observed flux density F_v . This expression is very handy for going from K to Janskys (Jansky is a unit of flux density: 1 Jy = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹).