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Derivation of the 
Boltzmann Distribution

CLASSICAL CONCEPT REVIEW 7

Consider an isolated system, whose total energy is therefore constant, consisting of an 
ensemble of identical particles1 that can exchange energy with one another and 
thereby achieve thermal equilibrium. In order to simplify the numerical derivation, 
we will assume that the energy E of any individual particle is restricted to one or 
another of the values 0, DE, 2DE, 3DE, . . . Later, after seeing how the distribution 
emerges, we can let DE → 0 so that the permitted energies are continuous. Simply to 
keep the amount of subsequent calculations manageable, we will assume that the sys-
tem consists of only six particles (hardly a “large” number!) and that the total energy 
Etotal of the system is 8DE, both numbers being arbitrarily chosen, the latter of neces-
sity being an integer multiple of DE.

It is also convenient at this point to introduce the concept of macrostates and 
microstates. The term microstate refers to the description of the system in which the 
state of every individual particle is specified. For classical particles this means speci-
fying the position and momentum, hence energy, for each. In quantum mechanics it 
means specifying a complete set of quantum numbers for each particle. The macro-
state for a system is a less detailed description in which only the number of particles 
occupying each energy state is specified.

Since the particles can exchange energy with one another, all possible macro-
states, that is, divisions of the total energy Etotal = 8DE between six particles, can 
occur. For the example we are considering, there are 20 macrostates, labeled 1 through 
20 in Table BD-1. For instance, macrostate 1 has five particles with E = 0 and one 
with E = 8DE; macrostate 2 has four particles with E = 0, one with E = DE, and one 
with E = 7DE; and so on. Notice that there are six different ways we can rearrange the 
particles in macrostate 1 so as to achieve that particular division of the total energy 
8DE since any one of the particles can be put into the state 8DE with the other five in 
the state E = 0. Each of these six arrangements is different from the other because the 
classical particles in a microstate are identical in terms of physical properties but 
distinguishable in terms of position and momentum, hence energy. Thus, the rear-
rangements of the five particles in the E = 0 state are not distinguishable from one 
another since all five have the same energy. The number of distinguishable rearrange-
ments of the particles within a given macrostate are the microstates.

The way the number of microstates is computed goes as follows: For six parti-
cles the rules of statistics tell us that there are 6! different rearrangements or permu-
tations possible. For N particles the number is, of course N!. However, since 
rearrangements within the same energy state are not distinguishable, those must be 
divided out of the total:
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	 Number of microstates =
N!

n0! n1! n2!g ni!
	

For macrostate 1 there are five particles in the E = 0 state, so the 5! rearrange-
ments of those five must be divided out of the 6! total number for all six particles in 
order to obtain the number N of distinguishable rearrangements, or microstates, for 
macrostate 1. Since 6!>5! = 6, that is how the number of microstates for macrostate 1 
was determined. Example BD-1 following Table BD-1below illustrates the calcula-
tion for macrostate 6 of the system we are using for the derivation.

EXAMPLE BD-1  Number of Microstates Compute the number of microstates, 
that is, distinguishable rearrangements, for macrostate 6 in Table BD-1.

SOLUTION
The total number of possible rearrangements of six particles is 6!; however, energy 
state E = 0 contains three particles, hence 3! indistinguishable rearrangements, and 
energy state E = DE contains two particles, hence 2! more. Therefore, the total 
number of microstates is

	
N!

n0! n1!
=

6!

3!2!
=

6 * 5 * 4 * 3 * 2 * 1

13 * 2 * 12 12 * 12 = 60

If we now make the reasonable assumption that all microstates occur with the 
same probability, then the relative probability Pj that macrostate j will occur is pro-
portional to the number of microstates that exist for that state. For our system there 
are 1287 total microstates, so the relative probability Pj of occurrence for each of the 
20 macrostates is the number of microstates listed in the column on the right of Table 
BD-1 divided by 1287. Now we are close to obtaining the approximate form of the 
Boltzmann distribution. Assuming that the most probable distribution of the particles 
among the available states is that corresponding to thermal equilibrium, we have only 
to calculate how many particles n(Ei) are likely to be found in each of the nine energy 
states E0 = 0 through E8 = 8DE. Consider the E0 = 0 state. For macrostate 1, the prob-
ability of occurrence P1 is 6>1287 and there are five particles in the E0 = 0 energy 
state; therefore, macrostate 1 will contribute 5 * 16>12872 = 0.023 particles to the 
total for E0 = 0. The number of particles contributed by the other 19 macrostates to 
the E0 = 0 state are computed in an identical manner and, when added, yield a total 
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BD-1  n(E) versus E for the data 
in Table BD-1. The solid curve is 
the exponential n1E2 = Be-E>Ec, 
where the constants B and Ec 
have been adjusted to give the 
best fit to the data points.
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n(0) = 2.31 particles, meaning that an average of 2.31 of the six particles will be 
found to have E = 0. Thus, in general the n(Ei) values are given by

	 n1Ei2 = a
j

 nij pj = gi f1Ei2	 BD-1a

where gi is the statistical weight of state i and f(Ei) is the probability of a particle hav-
ing energy Ei. Clearly, then

	 N = a
i

 n1Ei2	 BD-1b

The bottom row of Table BD-1 records the result of this calculation for each of the 
possible energies. Note that the sum of the n(Ei) values is 6 as you would expect.

In Figure BD-1 the values of n(Ei) are plotted against E. The curve shown with 
the solid line is an exponential function fitted to the data where B and Ec in Equation 
BD-2are constants.

	 n1E2 = Be-E>Ec	 BD-2

If we allow DE to become smaller while keeping the total energy the same as before, 
we get more data points on the graph. In the limit as DE → 0, E becomes a continuous 
variable and n(E) a continuous function. If we also increase the number of particles to 
a statistically large number, we find that the data points fall exactly on the solid curve 
in Figure BD-1; that is, the form of the Boltzmann distribution is correctly given by 
Equation BD-2. Verifying this with an extension of the calculation for six particles 
and Etotal = 8DE to a large number of particles and energy states would be a formida-
ble task. Fortunately, there is a much simpler but subtle way to show that it is correct, 
as has been described by Eisberg and Resnick.2

When a particular particle gains energy as the result of an interaction, it does so 
at the expense of the rest of the particles since the total energy of the system is con-
served. Except for this conservation requirement, the particles are independent of one 
another and, in particular, there is no prohibition or constraint on more than one par-
ticle occupying the exact same energy state, as Table BD-1 illustrates. Consider just 
two particles from the ensemble. Let the probability of finding one of them in the 
energy state E1 be given by f (E1). Since the distribution function is the same for all of 
the particles (because they are identical), the probability of finding the second one in 
an energy state E2 is found by evaluating that function at E2, that is, f (E2). Since the 
particles are independent of one another, so are their probabilities. Consequently, 
according to probability theory, the probability of both occurrences, that is, of finding 
one particle with energy E1 and the other with energy E2, is the product of the proba-
bilities f (E1)  f (E2). (This is equivalent to the probability of obtaining heads on two 
successive coin tosses. The probability of getting heads is 1>2 on each toss and the 
tosses, like the particles, are independent, so the probability of getting heads twice is 
1>2 * 1>2 = 1>4.)

Now consider all of the macrostates of the system for which the sum of the ener-
gies of the two particles totals E1 1 E2, as was just discussed but for which the two 
particles share the total differently than before.3 Since the energy is conserved, the 
remainder of the system has the same amount of energy (and the same number of par-
ticles) for each of these macrostates, namely Etotal 2 (E1 1 E2). All of these remain-
ders have the same number of ways to divide their energy among their constituent 
particles. Therefore, the probability for those microstates in which E1 1 E2 is shared 
between the two particles in a certain way can differ from the probability for those 
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  Table BD-1 � States and occupation probabilities for six particles with total 
energy 8DE

Number of particles with energy Ei equal to: iDE

 
Macrostate j

 
0

 

DE
 

2DE
 

3DE
 

4DE
 

5DE
 

6DE
 

7DE
 

8DE
Number of 

microstates

1 5 0 0 0 0 0 0 0 1 6

2 4 1 0 0 0 0 0 1 0 30

3 4 0 1 0 0 0 1 0 0 30

4 4 0 0 1 0 1 0 0 0 30

5 4 0 0 0 2 0 0 0 0 15

6 3 2 0 0 0 0 1 0 0 60

7 3 0 2 0 1 0 0 0 0 60

8 3 0 1 2 0 0 0 0 0 60

9 3 1 1 0 0 1 0 0 0 120

10 3 1 0 1 1 0 0 0 0 120

11 2 0 4 0 0 0 0 0 0 15

12* 2 2 0 2 0 0 0 0 0 90

13* 2 1 2 1 0 0 0 0 0 180

14* 2 2 1 0 1 0 0 0 0 180

15 2 3 0 0 0 1 0 0 0 60

16 1 4 0 0 1 0 0 0 0 30

17 1 3 1 1 0 0 0 0 0 120

18 1 2 3 0 0 0 0 0 0 60

19 0 4 2 0 0 0 0 0 0 15

20 0 5 0 1 0 0 0 0 0 6

n(Ei) 2.31 1.54 0.98 0.59 0.33 0.16 0.07 0.02 0.005 1287

microstates in which E1 1 E2 is shared differently only if the different ways E1 1 E2 
can be shared occur with different probabilities. However, we have already assumed 
that all microstates occur with the same probability; therefore, we must conclude that 
all microstates in which E1 1 E2 is shared differently between the two particles occur 
with the same probability. This means that the probability for such microstates occur-
ring is some function of the sum E1 1 E2, say h(E1 1 E2). The original sharing of 
energy, E1 to one particle and E2 to the other, is certainly one of these and, hence, has 
probability h(E1 1 E2). But we have already shown that particular sharing to occur 
with probability f (E1)  f (E2) and we must conclude, therefore, that
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	 f1E12 + f1E22 = h1E1 + E22	
Thus, the probability distribution f(E) that we seek has the property that the prod-

uct of the results of evaluating the function f(E) at two different energies is a function 
of the sum of those energies. The only mathematical function that has this property is 
the exponential function.4 If we take n(Ei), the average number of particles with 
energy Ei (again, see Table BD-1), to be proportional to f(Ei), as would be expected, 
then we have from Equation BD-2 that

	 f1E2 = Ae-E>Ec	 BD-3

from which we conclude that the exponential form used to fit the data in Figure BD-1 
is the only correct form of the distribution of identical, distinguishable particles 
among the available energy states of a classical system.5

Boltzmann used calculus of variations to do a much more general derivation of 
Equation BD-3 than we have done here, obtaining for the constant Ec, independent of 
the nature of the particles, the value

	 Ec = kT 	 BD-4

where k = 1.381 * 10-23 J>K is the Boltzmann constant and T is the absolute tem-
perature. Inserting Ec from Equation BD-4 into Equation BD-3 gives the Boltzmann 
distribution fB, the probability that a state with energy E is occupied at temperature T:

	 fB1E2 = Ae-E>kT	 BD-5

In a wave-mechanical treatment of the example system of six identical particles 
that we used in the derivation of the Boltzmann distribution above, the individual 
microstates that were identified for a particular macrostate cannot be distinguished 
from one another. Thus, rather than the 1287 distinguishable microstates listed in 
Table BD-1, the system of six identical, indistinguishable particles with a total energy 
8DE has only the 20 macrostates (Bose-Einstein statistics). Again assuming that each 
of these states occurs with equal probability as we did with the distinguishable micro-
states earlier, we find that the average number of particles in each energy state is 
computed just as illustrated in that example. For example, for the E = 0 state, state 1 
contributes (see Table BD-1)

	
Number of particles in state 1 with E = 0

Number of states
=

5

20
	

and the average number of particles nBE(0) in energy state E = 0 is, therefore,

	 nBE102 =
35 + 14 * 42 + 15 * 32 + 15 * 22 + 13 * 12 4

20
= 2.45	

Table BD-2 lists the average number of such particles nBE(E) in each energy state 
computed in the same manner as the example above. Note that the number of particles 
totals 6, as expected.

There is yet another condition that limits the way quantum-mechanical particles 
that obey the Pauli exclusion principle can be distributed among the energy states 
(Fermi-Dirac statistics). If our six particles were electrons, the exclusion principle 
would prevent more than two (one with spin up and one with spin down) from occu-
pying any particular energy. Since the exclusion principle applies to all particles that, 
like electrons, have 1

2-integral spins, such as protons, neutrons, muons, and quarks, 
this limitation in number per energy state applies to them also. Examining Table 
BD-2, we see that only the three macrostates marked with asterisks (12, 13, and 14) 
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conform to this limitation. Thus, particles that obey the exclusion principle can only 
occupy those three states. Once again assuming that each is occupied with equal prob-
ability, we find that the average number of particles nFD(E) in each energy state is 
computed as before. For example, the average number of particles in the E = 0 state, 
nFD(0), is

	 nFD102 =
Number of particles with E = 0

Number of states
=
12 + 2 + 22

3
= 2	

Notes for Derivation of the Boltzmann 
Distribution

1.	 We use the term particles here as a specific example. They could be molecules, 
grains of dust, coil springs, and so on, just as long as they are all identical and 
can contain energy.

2.	 See R. Eisberg and R. Resnick, Quantum Physics, 2nd ed. (New York: Wiley, 
1985), Appendix C-4.

3.	 Using the particles in Table BD-1 as an example, suppose E1 1 E2 = 5DE. 
Then macrostates 4, 8, 9, 10, 13, 14, 15, 16, and 17 are all ones in which two 
particles have total energy 5DE, although each particle’s share varies between 
the macrostates.

4.	 Recall that ea  eb = e(a1b).

5.	 This argument allows both positive and negative exponentials. The positive 
exponential is ruled out on physical grounds since it predicts an infinite 
probability that a particle will have infinite energy, which is in obvious 
disagreement with experimental observation.

  Table BD-2 � Distribution of six quantum particles with 
total energy 8DE

Energy state 0 DE 2DE 3DE 4DE 5DE 6DE 7DE 8DE

nBE(E) 2.45 1.55 0.90 0.45 0.30 0.15 0.10 0.05 0.05

nFD(E) 2.00 1.67 1.00 1.00 0.33 0 0 0 0
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