AST 300B – Spring 2019 In-class/take-home Problems Due: Friday April 12th

34. The Orion KL object is a region behind the Orion Nebula with what appears to be an "explosion" of outflowing gas that can be traced by H_2 in shocks. Observations of shocked H_2 in the infrared toward Orion KL indicate the following integrated intensities for the ro-vibrational lines:

I= $6.9 \times 10^{-3} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ ster}^{-1} \text{ for v} = 1-0 \text{ S}(1)$ I= $5.7 \times 10^{-4} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ ster}^{-1} \text{ for v} = 2-1 \text{ S}(1)$

Assuming the emission is isotropic, optically thin, and thermalized ($T_{ex} = T_k$), calculate the gas kinetic temperature (T_k) in the shocked gas. Hints: Take the ratio of the observed integrated intensities of the two lines. Check out the references Turner et al. 1977, ApJS, 35, 281 for Einstein As and Table 3 of Black & van Dishoeck 1987, ApJ, 322, 412 (on back) for wavelengths of transitions. The statistical weights are $g_{v,J} = 3(2J + 1)$ when J is odd and $g_{v,J} = (2J + 1)$ when J is even (there is no dependence on v because it is not an angular momentum).

Figure 1: Near-IR H₂ emission (orange) toward Orion KL.

				*			
ν ^a	λ ⁶	Transition	$100I/I_{total}$	<i>ī</i> v ^a	λ*	Transition	$100I/I_{total}$
(cm ⁻¹)	μm		per cent	(cm ⁻¹)	μm		per cent
354.37350 ^c	28.21112	(0,0)S(0)	2.35	3908.523	2.5578	(2, 1) Q(2)	.48
587.03211 ^c	17.03020	(0,0) S(1)	1.48	3920.053	2.5503	(2, 1) Q(1)	.94
814.42473°	12.275259	(0,0)S(2)	.21	3934.676	2.5408	(4,3)S(1)	.24
1034.67024°	9.6622810	(0,0)S(3)	.43	\$950.060	2.5309	(10, 8) O(3)	.08
1246.09811°	8.0228631	(0,0)S(4)	.13	3955.655	2.5273	(1,0)Q(8)	.07
1447.27882	6.907635	(0,0)S(5)	.31	3988.761	2.5064	(5,4)S(3)	.06
1637.046	5 8008	(0, 0) S(0) (1, 1) S(7)	.10	5997.637	2.5008	(3, 2) S(0)	.23
1814.498	5.5097	(0, 0) S(7)	.27	4039.507	2.4993	(1,0)Q(1)	.17
1978.984	5.0517	(0,0) S(8)	.08	4073.739	2.4541	(1, 0) Q(5)	.51
2018.494	4.9528	(1, 1) S(9)	.09	4082.876	2.4486	(9,7) 0(5)	.08
2130.102 ^d	4.69333	(0,0)S(9)	.22	4102.582	2.436824	(1,0)Q(4)	.45
2264.147	4.4155	(1,1)S(11)	.09	4105.855	2.4349	(4,3)S(2)	.11
2267.648	4.4087	(0,0) S(10)	.06	4125.8739	2.4230678	(1, 0) Q(3)	1.12
2376.602	4.2065	(5,4)0(5)	.06	4143.46607	2.4127801	(1, 0) Q(2)	.81
2391.012	4.1001	(0, 0) S(11)	.15	4155.25469/	2.4059349	(1,0)Q(1)	1.59
2466.679	4.0529	(2, 1) O(7)	.08	4190.247	2.3030	(3, 2) S(1)	42
2517.633	3.9709	(3, 2) 0(6)	.06	4263.450	2.3449	(9,7)O(4)	.08
2552.812	3.9162	(4,3)0(5)	.12	4265.235	2.3439	(4, 3) S(3)	.13
2563.921	3.8992	(6,5)0(3)	.07	4305.777	2.3218	(10, 8) Q(1)	.07
2569.762	3.8904	(5,4)0(4)	.06	4372.445	2.2864	(3, 2) S(2)	.23
2600.0 ^e	3.8451	(0,0) S(13)	.07	4437.230	2.2530	(9,7)O(3)	.16
2626.460	3.8064	(1,0) O(7)	.14	4448.958	2.2471	(2, 1) S(1)	.89
2003.304	3.1221	(2, 1) O(6)	.10	4497.8391	2.2226833	(1,0) S(0)	.73
2756.803	3.6264	(3, 2) O(3)	.12	4523.305	2.2101	(8,0)0(5)	.13
2763.565	3.6175	(5, 4) O(3)	.14	4542.592	2.2008	(3, 2) = (3) (9, 7) = O(2)	.20
2856.483	3.4999	(1,0)0(6)	.18	4642.069	2.1536	(2, 1) S(2)	.44
2908.775	3.4369	(2, 1) O(5)	.37	4699.270 .	2.1274	(3, 2) S(4)	.09
2944.738	3.3950	(3,2) O(4)	.21	4712.9054 ^f	2.1212544	(1,0)S(1)	J.60
2956.311	3.3817	(5,4) O(2)	.07	4713.535	2.1210	(8,6)0(4)	.12
2961.679	3.3755	(4, 3) O(3)	.26	4741.551	2.1084	(7,5) O(6)	.05
3008.130	5.3234	(0, 5) Q(1)	.07	4760.474	2.1001	(9,7)Q(3)	.09
3134 081	3 1880	(1,0)0(3)	.03	4798.307	2.0835	(9, 1) Q(2) (2, 1) S(3)	.07 56
3160.729	3.1630	(3, 2) O(3)	.46	4823.551	2.0728	(9,7) O(1)	.15
3165.664	3.1580	(4,3) 0(2)	.14	4831.006	2.0694	(12, 9) O(3)	.07
3207.774	3.1166	(5,4)Q(3)	.09	4841.305	2.0650	(3,2) S(5)	.11
3224.653	3.1003	(5,4)Q(2)	.07	4897.691	2.0412	(8,6) O(3)	.26
3235.949	3.0894	(5,4)Q(1)	.15	4917.0069 ^f	2.0332026	(1,0)S(2)	.80
3329.040	3.0030	(1, 0) O(4)	.62	4926.890	2.0291	(6, 4) O(7)	.06
3362.408	2.9732	(2, 1) O(3)	.01	4945.497	2.0215	(7, 5) O(5)	.18
3313.974 3383 QR4	2.9013	(3, 2) O(2)	.25	4989.794	1 0868	(2,1)5(4)	.19
3411.695	2.9303	(4, 3) Q(4)	.07	5074.206	1.9702	(8, 6) O(2)	.13
3434.063	2.9112	(4, 3) Q(3)	.19	5108.4040	1.9570243	(1,0)S(3)	1.07
3450.963	2.8970	(4,3)Q(2)	.14	5141.750	1.9443	(2, 1) S(5)	.25
3462.292	2.8875	(4,3)Q(1)	.29	5142.519	1.9440	(6,4)0(6)	.07
3509.952	2.8483	(5,4)S(0)	.06	5145.551	1.9429	(7,5)0(4)	.18
\$539.850	2.8242	(3,2)Q(7)	.07	5146.110	1.9427	(8,6)Q(5)	.07
3568.225	2.8017	(1,0)0(3)	1.34	5140.794	1.9424	(9,7)5(1)	.11
3578.004	2.7941	(3, 2) Q(6)	.05	5205 628	1.9390	(8,6) O(4)	.00
3611.073	2.7685	(3, 2) O(5)	16	5253.408	1.9030	(8,6)Q(3)	.16
3638.898	2.7473	(3, 2) O(4)	.14	5277.779	1.8942	(2, 1) S(6)	.08
3661.342	2.7305	(3, 2) Q(3)	.36	5285.605	1.8914	(1,0)S(4)	.37
\$676.336	2.7194	(2, 1) Q(9)	.07	5289.346	1.8901	(8,6)Q(2)	.12
\$678.285	2.7179	(3,2)Q(2)	.27	5311.340	1.8822	(5,3)0(7)	.07
3680.158	2.7165	(5,4)S(1)	.11	5313.358	1.8815	(8,6)Q(1)	.25
3689.635	2.7096	(3, 2) Q(1)	.53	5324.762	1.8775	(9,7) S(3)	.05
3753.274	2.0036	(4, 5) 5(0)	.12	5356 190	1.8645	(6.4) 0(5)	.34
3794 871	2.6344	(1, 0) Q(1)	.13	5397.235	1.8523	(2, 1) S(7)	.12
3806.770	2.6262	(2, 1) O(6)	.10	5447.354	1.8353	(1,0) S(5)	.53
\$806.800	2.6262	(1,0)0(2)	.71	5527.648	1.8086	(7,5)O(2)	.20
3840.294	2.6033	(2, 1) Q(5)	.29	5536.710	1.8056	(5,3)0(6)	.08
3868.528	2.5843	(2, 1) Q(4)	.26	5540.521	1.8044	(8,6)S(0)	.10
3891.314	2.5691	(2, 1) Q(3)	.65	5566.454	1.7960	(6,4)0(4)	.23
3906.478	2.5592	(1,0)Q(9)	.14	5592.701	1.7876	(1,0)S(6)	.16

TABLE 3 Strongest Fluorescent Lines of $\rm H_2$ in Model 14

@ American Astronomical Society $~\bullet~$ Provided by the NASA Astrophysics Data System