AST 300B – Spring 2019 In-class/take-home Problems Due: Wed. April 3rd

31. The emissivity coefficient j_v (erg s⁻¹ cm⁻³ ster⁻¹ Hz⁻¹) for the twophoton transition 2s – 1s in the Hydrogen atom has the same equation as for an emission line except that the line profile function is replaced by $P_{2s}(v)$ which is the probability that a photon is emitted at frequency v. The Einstein A(2s-1s) ~ 8.23 s⁻¹. A Hydrogen atom energy level diagram is on the back.

- a. In the low density limit, collisional excitation and deexcitation are negligible, and the only way to populate the 2s level is by recombination at an effective recombination rate denoted by α_{2s}^{eff} . Write down the expression for j_v in terms of $P_{2s}(v)$ and α_{2s}^{eff} assuming statistical equilibrium $(dn_{2s}/dt = 0)$. [Hints: You will need to use statistical equilibrium to relate n_{2s} to α_{2s}^{eff} . What can you do with the Einstein B terms in the high v limit?]
- b. It is possible that the density in HII regions can become high enough that the 2s level is de-excited by collisions with protons and electrons to the 2p level. The "downward" collision rates are given by $\gamma(2s-2p) = 4.74 \times 10^{-4} \text{ cm}^3 \text{ s}^{-1}$ for collisions with protons and by $\gamma(2s-2p) = 0.57 \times 10^{-4} \text{ cm}^3 \text{ s}^{-1}$ for collisions with electrons (Osterbrock 1974). What is the critical density (n_{crit} cm⁻³) for the 2s-1s transition?
- c. Given that the critical density in part (b) is not unreasonable for HII regions, we can't always assume that the low density limit applies. Modify your equation for j_v assuming that collisional de-excitation by protons and electrons from 2s-2p cannot be ignored and assuming statistical equilibrium ($dn_{2s}/dt = 0$). [Hint: You don't need to worry about collisions from 2p-2s (because there is a *very fast* Einstein A from 2p-1s) or between 2s and any other levels. Also, what can you assume about the number density of electrons and protons?]. Express your answer in terms of n_{crit}.

