AST 300B – Spring 2019 In-class/Take-home Problems Due: Monday Mar 25

28. Consider a 2 level system with a single collisional partner with density n_c and a "critical density" that includes stimulated emission from a background radiation field given by $n_{crit} = (1 + n_{\gamma})A_{21}/\gamma_{21}$, where n_{γ} is equal to the ratio of stimulated to spontaneous de-excitation rates that you derived in Problem 26. In this problem, we shall explore the relative importance of radiative rates vs. collisional de-excitation.

- a. What are the units of the critical density, n_{crit} ?
- b. What is an expression for the fractional rate of radiative transitions from level 2 compared to the total de-excitation rate (by all mechanisms) from level 2? Simplify your answer to an expression with only n_c and n_{crit} .
- c. What is this fraction equal to when $n_c = n_{crit}$. Interpret.
- d. What is the limit of this fraction in the high density limit $(n_c >> n_{crit})$? In this limit, forbidden line transitions in HII regions are said to be "quenched". What does this mean in terms of observing the forbidden line and why?
- e. What is the limit of this fraction in the low density limit $(n_c \ll n_{crit})$?

29. Now consider a 3 level system with a single collisional partner with density n_c . Radiative transitions are only allowed from level $2 \rightarrow 1$ and from level $1 \rightarrow 0$. Assume $A_{20} \sim 0$.

- a. What is an expression for the fractional rate of radiative transitions from level 2 compared to the total de-excitation rate (by all mechanisms) from level 2, denoted by f_{21}^{rad} ? Convert all Einstein B terms to Einstein As in your expression.
- b. What are the limits of f_{21}^{rad} at low and high density (n_c)?
- c. Define the "multi-level critical density" $(n_{crit})_{21}$ as the density at which $f_{21}^{rad} = \frac{1}{2}$. What is the equation for $(n_{crit})_{21}$? How is this different from the 2 level definition in Problem 28?