
AST 300B – Spring 2019 In-class Problem Due: Fri. Feb. 15

17. Let's calculate the long wavelength "spectral index" of dust emission. The spectral index, α , is defined as the power-law slope of the observed flux density over some range of wavelengths: $F_{\nu} \sim \nu^{\alpha}$. Consider an **optically thin** source of dust emission with emission well described by a source function $B_{\nu}(T_d)$ over a solid angle Ω , and dust mass opacity parametrized by $\kappa(\nu) = \kappa_0 (\nu/\nu_0)^{\beta}$ (cm²/g of dust) at long wavelengths. Assume that the source is small and $F_{\nu} = I_{\nu} \Omega$ is a good approximation.

(a) How does the dust optical depth τ_{ν} depend on frequency?

(b) In the Rayleigh-Jeans limit at long wavelength what is the spectral index α for (1) blackbody emission and (2) for optically thin dust emission with a dust opacity index of β ?

