## AST 300B – Spring 2019 In-class Problem Due: Fri. Feb. 8

14. Typical dense cores within molecular clouds have  $A_V \sim 10 - 100$  mag. Assume you have a cold ( $T_d = 10$  K) spherical gas and dust cloud that is thermally emitting at far-infrared through millimeter wavelengths.

- (a) Calculate the visual extinction  $A_V$  (mag) that would correspond to  $\tau = 1$  at  $\lambda = 0.5$  mm. Assume that the dust has a mass opacity at  $\lambda = 0.5$  mm of  $\kappa_V \sim 5$  cm<sup>2</sup>/g of dust (OH5 dust), that the gas mass to dust mass ratio is 100, that  $R_V = 3.1$ , and that the gas in the cloud is entirely molecular hydrogen. Is assuming optically thin emission at  $\lambda = 0.5$  mm a good assumption?
- (b) Is assuming optically thin emission at  $\lambda = 50 \ \mu\text{m}$  a good assumption?  $\kappa_v \sim 300 \ \text{cm}^2/\text{g}$  of dust (OH5 dust) at  $\lambda = 50 \ \mu\text{m}$ .



FIGURE 1: Thermal dust emission at 500  $\mu$ m from the central Taurus molecular cloud observed by the *Herschel Space Observatory*.