
AST 300B – Spring 2019 In-class/take-home Problems Due: Wed. Feb. 6

12. Observations of a supergiant star in the Upper Sco OB Association indicate that it has a spectral type of A5II with magnitudes of B = 5.38 mag and V = 4.55 mag that have been modified by dust. Assuming a standard R_V = 3.1, calculate the hydrogen column density (cm⁻²) along this line of sight. Table 1 from Fitzgerald 1970, A&A, 4, 234 ("The Intrinsic Colours of Stars and Two-Colour Reddening Lines") is attached.

13. In this problem, you will explore extinction/opacity laws at OIR and far-infrared/millimeter wavelengths.

- (a) Consider a UV to near-IR dust extinction law that varies with wavelength as a power-law $A_{\lambda} \sim \lambda^{-\beta}$ [mag]. What power-law index β corresponds to $R_V = 3.1$ for standard ISM dust?
- (b) Dust grains can coagulate and grow in size in dense environments. Furthermore, in cold environments, ices (H₂O, CO, etc.) can form on the surface of the grains. These effects change the opacity of the grains. In a classic paper by Ossenkopf & Henning (1994 A&A, 291, 943), the dust opacities were calculated for dust grains that have coagulated at different densities and with different amounts of H₂O ice. Column 5 for grains coagulated at a density of 10⁶ cm⁻³ with thin ice mantles (called "OH5" dust) is a very popular model used to approximate the opacities of dust in dense star forming regions at far-infared through millimeter wavelengths. Assume the dust opacity at $\lambda \ge 350 \ \mu m$ is well described by a single power law with $\kappa_{v} \sim \lambda^{-\beta}$ [cm²/g]. Calculate β for OH5 dust. HINT: use a linear regression.

V. Ossenkopf & Th. Henning: Dust opacities for protostellar cores

Initial distribution:	MRN			MRN with thin ice mantles			MRN with thick ice mantles		
Gas density [cm ⁻³]	-	106	10 ⁸	-	10 ⁶	10 ⁸	_	106	10 ⁸
	Fig. 1a	Fig. 2a	Fig. 2b	Fig. 1b	Fig. 3a	Fig. 3b	Fig. 1c	Fig. 4a	Fig. 4b
λ [μ m]					κ[cm ² /g]				
5.41e+1	9.05e+1	1.45e+2	2.19e+2	1.92e+2	2.80e+2	3.48e+2	9.79e+2	1.19e+3	1.34e+3
6.31e+1	7.16e+1	1.16e+2	1.76e+2	1.43e+2	2.11e+2	2.63e+2	6.59e+2	8.21e+2	9.37e+2
7.36e+1	5.60e+1	9.19e+1	1.41e+2	1.05e+2	1.58e+2	1.97e+2	4.25e+2	5.41e+2	6.22e+2
8.58e+1	4.37e+1	7.32e+1	1.14e+2	7.76e+1	1.18e+2	1.47e+2	2.62e+2	3.40e+2	3.90e+2
1.00e+2	3.44e+1	5.92e+1	9.38e+1	5.56e+1	8.65e+1	1.07e+2	1.27e+2	1.72e+2	1.95e+2
1.17e+2	2.70e+1	4.82e+1	7.86e+1	4.30e+1	6.75e+1	8.30e+1	8.30e+1	1.13e+2	1.28e+2
1.36e+2	2.07e+1	3.88e+1	6.57e+1	3.30e+1	5.25e+1	6.45e+1	5.73e+1	7.91e+1	8.85e+1
1.58e+2	1.59e+1	3.16e+1	5.61e+1	2.53e+1	4.09e+1	5.03e+1	3.98e+1	5.57e+1	6.19e+1
1.85e+2	1.17e+1	2.53e+1	4.74e+1	1.87e+1	3.07e+1	3.77e+1	2.71e+1	3.84e+1	4.23e+1
2.26e+2	8.16e+0	1.95e+1	3.89e+1	1.30e+1	2.17e+1	2.67e+1	1.75e+1	2.51e+1	2.74e+1
3.50e+2	3.64e+0	1.13e+1	2.58e+1	5.91e+0	1.01e+1	1.24e+1	7.79e+0	1.12e+1	1.20e+1
5.00e+2	1.77e+0	7.61e+0	1.98e+1	2.90e+0	5.04e+0	6.21e+0	3.79e+0	5.50e+0	5.72e+0
7.00e+2	9.09e-1	4.56e+0	1.25e+1	1.48e+0	2.57e+0	3.18e+0	1.93e+0	2.81e+0	2.93e+0
1.00e+3	4.77e-1	2.74e+0	7.85e+0	7.81e-1	1.37e+0	1.69e+0	1.01e+0	1.48e+0	1.54e+0
1.30e+3	3.09e-1	1.99e+0	5.86e+0	5.11e-1	8.99e-1	1.11e+0	6.48e-1	9.62e-1	1.00e+0

Table 1. (continued)

Portion of Table 1 from Ossenkopf & Henning 1994 (p. 949).

M. P. FitzGerald

Astron. & Astrophys.

Table 1. Adopted $(B-V)$, colours
--------------------------	-----------

	Table 1. Adopted $(B-V)_0$ colours									
	v	IV-V	IV	111-IV	ш	II-III	п	Ib	Iab	Ia
05	-0.32									
06	-0.32									
07	-0.32									
07.5	-0.31									
08	-0.31				-0.31				-0.29	
D 9	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.28	-0.28	-0.28
09.5	-0.30	-0.30	-0.30	-0.30	0.30	-0.30	0.30	-0.27	-0.27	-0.27
B0	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.29	-0.24	-0.24	-0.24
B0.5	-0.28	-0.28	-0.28	-0.28	-0.28	-0.30	-0.28	-0.22	-0.22	-0.22
B1	-0.26	-0.26	-0.26	-0.26	-0.26	-0.28	-0.24	-0.19	-0.19	-0.19
B1.5	-0.25	-0.25	-0.25	-0.25	-0.25	-0.27	-0.22	-0.17	-0.18	-0.18
B2	-0.24	-0.24	-0.24	-0.24	-0.24	-0.22	-0.21	-0.16	-0.17	-0.17
B2.5	-0.22	-0.22	-0.22	-0.22	-0.22	-0.20	-0.19	-0.15	-0.15	-0.15
B3	-0.20	-0.20	-0.20	-0.20	-0.20	-0.18	-0.17	-0.13	-0.13	-0.13
B4	-0.18	-0.18	-0.18	-0.18	-0.18					-0.11
B5	-0.16	-0.16	-0.16	-0.16	-0.16	-0.15	-0.14	-0.09	-0.09	-0.09
B6	-0.14	-0.14	-0.14	-0.14	-0.14	-0.13	-0.12	-0.07	-0.07	-0.07
B7	-0.13	-0.13	-0.13	-0.12	-0.12	-0.12	-0.12	-0.04	-0.04	-0.04
B8	-0.11	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.02	-0.02	-0.01
B9	-0.07	-0.07	-0.07	-0.08	-0.08	-0.08	-0.06	-0.02	0.00	0.00
B9.5	-0.04	-0.04	-0.04	-0.05	-0.05	-0.04	-0.03	-0.01	0.00	0.01
A0	-0.01	-0.02	-0.02	-0.03	-0.03	-0.01	0.00	0.00	0.01	0.02
A1	0.02	0.01	0.00	0.01	0.01			0.02	0.03	0.03
A2	0.05	0.06	0.06	0.05	0.05			0.05	0.05	0.05
A3	0.08	0.09	0.09	0.09	0.09				0.06	0.06
A4	0.12	0.12	0.12	0.12	0.12				0.08	0.08
A5	0.15	0.15	0.15	0.15	0.15	0.13	0.10	0.10	0.10	0.10
A7	0.20	0.22	0.22	0.22	0.24		0.14	0.13	0.13	0.13
AS	0.27	0.27	0.26	0.26	0.26			0.14	0.14	0.14
A9	0.30	0.30	0.29	0.29	0.28		0.18	0.14	0.14	0.14
FO	0.32	0.30	0.30	0.30	0.32			0.15	0.15	0.15
F1	0.34	0.34	0.33	0.33	0.33			0.16	0.16	0.16
F2	0.35	0.38	0.37	0.37	0.36			0.18	0.18	0.18
F3 F4	0.41 0.42	0.39 0.40	0.39 0.42	0.39 0.42	0.39 0.42					
F5	0.45	0.42	0.44	0.43	0.43		0.38	0.26	0.26	0.26
F6	0.48	0.48	0.46	0.46	0.46					
F7	0.50	0.49	0.50	0.49	0.48			0.55	0.55	0 ==
F8 F9	0.53 0.56	0.51 0.56	0.53 0.57	0.52	0.52			0.55	0.55	0.55
a 0	0.00	0.00	0.00	0.00			c =0	0.00	0.00	0.00
G0	0.60	0.60	0.63	0.62	0.64		0.73	0.82	0.82	0.82
Gl	0.62	0.60	0.63		0.69		0.80	0.85	0.85	0.85
G2 G3	0.65	0.60	0.64 0.66		0.77	0.00	0.87	0.88	0.88	0.88
G3 G4	0.66	0.60 0.64	0.66		0.85 0.88	0.86 0.87	0.87 0.87	0.92	0.92	0.92
G5	0.68	0.60	0 70	0.05	0.00	0.00	0.07	7.00	1 00	1.00
	0.68	0.68	0.70	0.85	0.90	0.88	0.87	1.00	1.00	
G6 C7	0.72	0.73			0.92	0.92	0.91	1.04	1.04	1.04
G7 G8	0.73	0.76 0.80	0.69	0.90	0.94	0.94	0.95	1.10	1.10	1.10
G8 G9	0.74	0.80	0.82 0.90	0.89	0.95	0.96	0.99	1.14	1.14	
G B	0.76	0.85	0.90	0.95	0.98	1.00	1.02	1.16	1.16	1.16