

TABLE H-2 RADIAL WAVE FUNCTIONS.		VE FUNCTIONS.	0.4 \ ls	0.4 2p
1	l	$R_{n,\ell}$		
	0	$\frac{2}{\sqrt{a_0^3}}e^{-r/a_0}$	0.2	0.2
	0	$\frac{1}{\sqrt{2a_0^{3}}} \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0}$	0.2	0.2 0.15
	1	$\frac{1}{\sqrt{24a_0^3}}\frac{r}{a_0}e^{-r/2a_0}$	0.1	0.1
	0	$\frac{2}{\sqrt{27a_0^3}} \left(1 - \frac{2r}{3a_0} + \frac{2r^2}{27a_0^2} \right) e^{-r/3a_0}$	0.1 3s	0 5 10 15 0.1 4p
	1	$\frac{8}{27\sqrt{6a_0^3}}\frac{r}{a_0}\left(1-\frac{r}{6a_0}\right)e^{-r/3a_0}$	0.05	0.05
3	2	$\frac{4}{81\sqrt{30a_0^3}} \left(\frac{r}{a_0}\right)^2 e^{-r/3a_0}$	0 10 20 30 40 Distance in Bohr radii	0 10 20 30 Distance in Bohr radii

Note: The number of nodes depend not only on n, but on l. The magnetic quantum number m_l does not have any effect on the radial probability.

Fig. 9.5 Radial probability densities for the 1s, 2s, 3s, 2p, 3p and 4p states of the hydrogen atom. Note that the unit of distance is the Bohr radius a_0 and that a different scale is used for states with a different number of radial nodes.

