

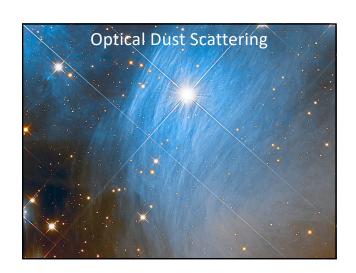
ON A NEBULOUS GROUNDWORK IN THE CONSTELLATION TAURUS

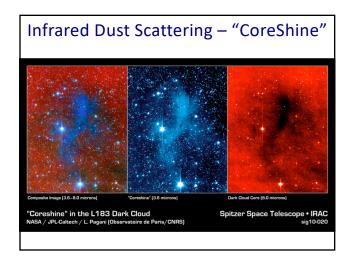
By E. E. BARNARD

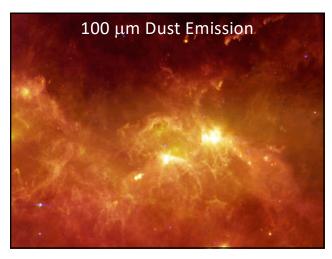
I have been slow in accepting the idea of an obscuring body to account for these vacancies; yet this particular case almost forces the idea upon one as a fact. There are portions of this apparent vacancy that are certainly darker than the adjacent sky.

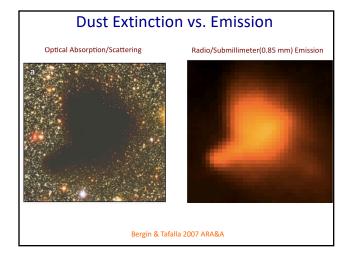
VACANCY AND NEBULA 18 TAURUS

10-inch Lens. 1907, January 9, 12^h 27^m to 17^h 55^m G. M. T. Enlarged 1.6 times. Scale: 1° = 35 mi

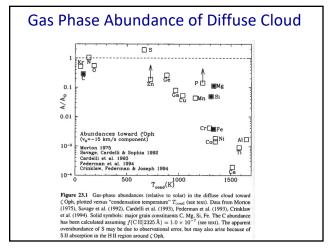



Recognizing Dust - History

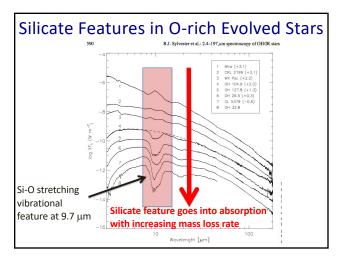

- As early as 1867 Wilhelm Struve found that the density of stars diminished with increasing distance from the Sun: "Stars are dimmed!"
- Jacobus Kapteyn 1904 derives an extinction value of ~ 1.6 mag kpc⁻¹ (close to current value of 1.8).
 However, he didn't believe the result and didn't include it in later work.
- Robert Trumpler 1930 compared luminosity and size of open clusters assuming all their diameters were the same. Identified absorption and color excess with increasing distance.
- Rudnick 1936, Hall 1937, and Stebbins et al. 1939 derive the interstellar reddening law $\sim \lambda^{-1}$

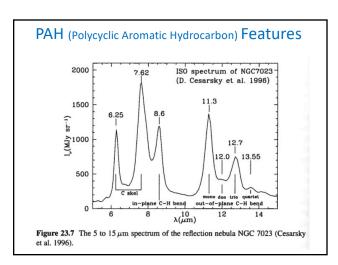

Interstellar Dust Grains ISM dust sizes from a few atoms up to few µm sizes can grow much larger in protoplanetary disks

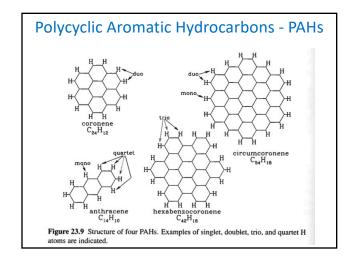
Dust Extinction (Absorption+Scattering) 0.44μm 0.55μm 0.90μm 2.16μm 1.25μm



Dust Grains Wavelength dependent extinction (absorption and scattering) Typically < 20 μm Polarization-dependent attenuation Scattered light result in reflection nebula Small angle scattering of x-rays = x-ray scattering "halos" Thermal emission Typically infrared through millimeter (radio) Opacity modified blackbody emission Microwave (cm-mm) emission from spinning dust grains Sites of formation of H₂ molecules






Material	Source	Grain Size	Abundancec
	Source	(μm)	(ppm)†
Amorphous silicates	Circumstellar	0.2-0.5	20-3600
Forsterite (Mg2SiO ₄) Enstatite (MgSiO ₃)	Circumstellar	0.2-0.5	10-1800
Diamond		~ 0.002	~ 1400
P3 fraction	Not known		
HL fraction	Circumstellar		
Silicon carbide	Circumstellar	0.1-20	13-14
Graphite	Circumstellar	0.1-10	7-10
Spinel (MgAl ₂ O ₄)	Circumstellar	0.1-3	1.2
Corundum (Al ₂ O ₃)	Circumstellar	0.5-3	0.01
Hibonite (CaAl ₁₂ O ₁₉)	Circumstellar	1-2	0.02

