## AST 250 - Spring 2019 Homework Due: Friday Jan. 25

6. Calculate the angular separation in degrees of two stars with coordinates $(10 \mathrm{~h},+80 \mathrm{~d})$ and $(11 \mathrm{~h},+70 \mathrm{~d})$.
(a) Do the problem first assuming flat Euclidean geometry. Draw a perpendicular coordinate system with $\alpha$ on the x -axis and $\delta$ on the $y$-axis that is flat in a plane. What is the angular separation between the stars (in degrees)?
(b) Now do the problem correctly using spherical geometry. Show that the difference between the two answers is substantial. Hint: when you draw the spherical triangle, don't worry about alt-az/horizon coordinates - start with a sphere with the NCP at the top and the SCP at the bottom (See Figure 1).


Figure 1: The celestial sphere.
7. Derive a general formula for the Hour Angle (HA) of a source that is setting which is only a function of latitude of the observer ( $\phi$ ) and declination ( $\delta$ ) of the source. How would you modify this equation for the Hour Angle of a source that is rising? NOTE: Since LST = HA $+\alpha$, you can use this equation to figure out the LST of when a source with coordinates ( $\alpha, \delta$ ) will rise and set from your latitude ( $\phi$ ) on Earth.


Figure 2: The setting Sun.

