AST 250 - Spring 2019 Homework Due: Monday Feb. 4

12. (a) If you were standing on a planet in the Alpha Centuari system ($\mathrm{D}=1.34 \mathrm{pc}$ at $\alpha, \delta=14^{\mathrm{h}} 40^{\mathrm{m}},-60^{\circ} 50^{\prime}$), what apparent visual magnitude would the Sun appear in the sky (quote your answer to 1 decimal place). Note that the absolute visual magnitude of the Sun is $\mathrm{M}_{\mathrm{V}}=+4.83$ mag.
(b) Toward which constellation(s) would the Sun appear in the Alpha Centauri sky (mark the position on the star chart on the back)?
(c) Alpha Centuari appears as a single star in our sky, but it is really comprised of two stars (named A and B with apparent magnitudes of $m_{V}=+0.01 \mathrm{mag}$ for A and $m_{V}=+1.33 \mathrm{mag}$ for B) that orbit each other over a period of 80 years. From our vantage point in the Solar System, these two stars appear as a single bright star to the eye. What is the apparent visual magnitude of the combined $\mathrm{A}+\mathrm{B}$ (quote your answer to 2 decimal places)? (HINT: Since magnitudes are logarithmically related to flux, you cannot simply add two magnitudes together to find the apparent magnitude of an unresolved binary star.)

SC002 CONSTELLATION CHART

