

ASTR 250

Fundamentals of Astronomy

Dr. Yancy Shirley
Office Hours: N310
Tu/Th 10-12 + appointment yshirley@email.arizona.edu

Need help with your $1^{\text {st }}$ or $2^{\text {nd }}$ year Astronomy and Physics major classes???

ATOMM

Astronomy Major Help Center

Monday through Friday
2:00-4:00 PM
$3^{\text {rd }}$ Floor Library
Steward Observatory

ASTR 250
 Fundamentals of Astronomy

Course prerequisites: PHYS 141 or 161 H
MATH 129 (Calculus II)

Grades

Homework: 75\% Midterm: 10\% Final Exam: 15\%
Feb $27^{\text {th }} 11-12 \quad$ May $6^{\text {th }} 10: 30-12: 30$

- There will several in-class problems where you will work in groups of 2-3. You need to be in class to get full credit.
- Take home problems should be your own individual work
- Emergencies happen! If you cannot turn in a homework on time, email me prior to class and we will work out a plan. Otherwise late homework will not be accepted.
- If you miss a problem, you may correct it and hand it in with the next homework to get half the missed credit back
- The lowest homework is dropped in calculation of the grade

ASTR 250

Fundamentals of Astronomy
http://eldora.as.arizona.edu/~yshirley/Arizona/AST250/

—
Syllabus
Pre-reqs: PHYS 141/161H, MATH 129
Homework: 75%, Exams 25%
A(>90\%), B(>75\%), C(>60\%), D($>50 \%)$
Midterm: Feb 27th 11 am
Final Exam: May 6th 10:30-12:30
CURRENT SCHEDULE

Date	Homework	Topic	Reading
W Jan 09		Intoduction	\|FA:
WJan 09		(Sildes) (Video)	As:Chapter 1
FJan 11	Hemework 1	Distance and Angle	\|FA:
FJan II	Homework 1	(Board) (Slides).	As:Chapter 19.1-19.2
M Jan 15		MARTIN LUTHER KING JR. DAY - No CLASS	
M Jan 14	Homework 2.3	Sky Coorlinate Systems	FA:Chapters 1.1 .1 .13
MJan 14	Homework 2.3	(Board) (SIldes)	As: Chapter 2.1
WJan 16	Homework 4.5	Local Siderial Time \& Hour Angle	FA: Chapters 1.4-1.6
			As:
FJan 18		FLANDRAU PLANETARIUM (SkyChart)	
M Jan 21		MARTIN LUTHER KING JR. DAY - NO CLASS	
W Jan 23	Homework 6.7	Spherical Trig (Board.pdf) (Law of Cosines/Sines Derivation)	
F Jan 25		Properties of Light	\|FA:
FJan 25	Homework 8	(SIIdes)	As: Chapter 5.1-5. 2
M Jan 28	Homework 9.10		\|FA: Chapter 13.2
			As:
W Jan 30	Homework 11,12	Magntudes	\|FA: Chapter 13.2
			As: Chapters 17.1-17.2
F Feb 01	Homework 13	(Barc) (Sidides)	As:Chapter 5.2

Set the Earth to a 6cm ball, or a 1:200,000,000 scale model

- The Moon is a marble at your arm span
- The Sun is a 7 m ball (about the height of Old Main) 700 m away (about the length of the UofA mall)
- The Solar System is the size of Tucson
- The nearest star is $1 / 2$ distance to the moon!

Definition: Astronomical Unit

- The mean distance between the Earth and the Sun
- $1.496 \times 10^{13} \mathrm{~cm}$
- Denoted as 1 "AU"

Reduce the scale by a factor of 50,000,000 $\longleftrightarrow 30 \mathrm{AU}$

- The Solar System is a 1 mm grain of sand
- The distance between stars is $\sim 10 \mathrm{~m}$
- The Milky Way is the Tucson-Phoenix distance
- The MW has > 1 trillion stars

Now reduce by another factor of 1,000,000

- The Milky Way is the size of a frisbee
- The nearest galaxy is 7 m away
- Radius Visible Universe ~80 miles
- $>10^{11}$ galaxies within visible Universe

Large Magellanic Cloud - "Irregular Galaxy"
Distance ~ $150,000 \mathrm{ly}$
$1 / 10^{\text {h }}$ size of
Milky Way

Cosmic Microwave Background: The farthest we can see back...

Radiation signature from 300,000 years after the Big Bang

