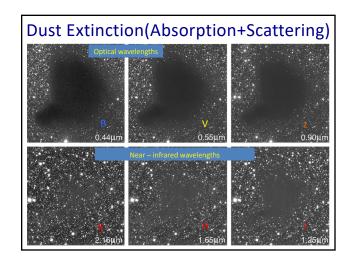
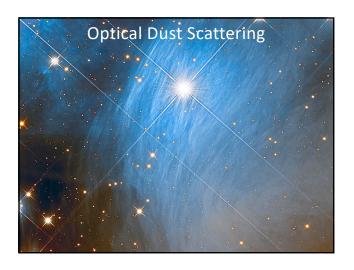


By E. E. BARNARD

I have been slow in accepting the idea of an obscuring body to account for these vacancies; yet this particular case almost forces the idea upon one as a fact. There are portions of this apparent vacancy that are certainly darker than the adjacent sky.




VACANCY AND NEBULA IN TAUROS

10-inch Lens. 1907, January 9, 12h 27th 10 17h 55th G. M. T. Enlarged 1.6 times. Scale: 1°= 35 s

Interstellar Dust Grains ISM dust sizes from a few atoms up to few µm sizes can grow much larger in protoplanetary disks Microscopic image

Abundance of Pre-solar Grains

Table 23.2 Types and Properties of Major Presolar Materials a,b Identified in Meteorites and IDPs.

Material	Source	Grain Size (μm)	Abundance ^c (ppm)†
Amorphous silicates	Circumstellar	0.2-0.5	20-3600
Forsterite (Mg ₂ SiO ₄) Enstatite (MgSiO ₃)	Circumstellar	0.2-0.5	10-1800
Diamond		~ 0.002	~ 1400
P3 fraction	Not known		
HL fraction	Circumstellar		
Silicon carbide	Circumstellar	0.1-20	13-14
Graphite	Circumstellar	0.1-10	7-10
Spinel (MgAl ₂ O ₄)	Circumstellar	0.1-3	1.2
Corundum (Al ₂ O ₃)	Circumstellar	0.5-3	0.01
Hibonite (CaAl ₁₂ O ₁₉)	Circumstellar	1-2	0.02

Other presolar materials include TiC, MoC, ZrC, RuC, FeC, Si₃N₄, TiO₂, and Fe-Ni metal.
 See Huss & Draine (2007) for details and references therein.

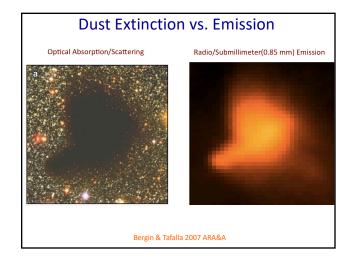
^c Abundance in fine-grained fraction (= matrix in primitive chondrites).

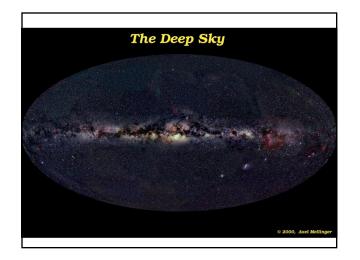
Abundance of Pre-solar Grains

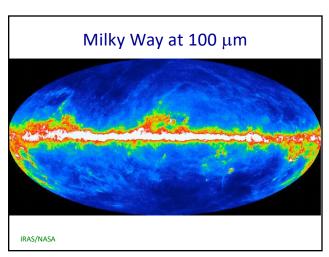
Table 23.2 Types and Properties of Major Presolar Materials^{a,b} Identified in Meteorites and IDPs.

Material	Source	Grain Size (μm)	Abundance ^c (ppm)†
Amorphous silicates	Circumstellar	0.2-0.5	20-3600
Forsterite (Mg ₂ SiO ₄) Enstatite (MgSiO ₃)	Circumstellar	0.2-0.5	10-1800
Diamond		~ 0.002	~ 1400
P3 fraction	Not known		
HL fraction	Circumstellar		
Silicon carbide	Circumstellar	0.1-20	13-14
Graphite	Circumstellar	0.1-10	7-10
Spinel (MgAl ₂ O ₄)	Circumstellar	0.1-3	1.2
Corundum (Al ₂ O ₃)	Circumstellar	0.5-3	0.01
Hibonite (CaAl ₁₂ O ₁₉)	Circumstellar	1-2	0.02

Other presolar materials include TiC, MoC, ZrC, RuC, FeC, Si₃N₄, TiO₂, and Fe-Ni metal.


b See Huss & Draine (2007) for details and references therein.


Abundance in fine-grained fraction (= matrix in primitive chondrites).


Interstellar Dust Extinction

The amount of dust extinction at a wavelength is give by A_{λ} [mag]

$$m_v^{obs} = m_v^{true} + A_v$$

